Cargando…
Collectivity in the light radon nuclei measured directly via Coulomb excitation
Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purp...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevC.91.064313 http://cds.cern.ch/record/2001403 |
Sumario: | Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purpose: Evidence for shape coexistence has been inferred from α-decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of Rn202 and Rn204 were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E2) matrix element connecting the ground state and first excited 21+ state was extracted for both Rn202 and Rn204, corresponding to B(E2;21+→01+)=29−8+8 and 43−12+17 W.u., respectively. Additionally, E2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in Rn202. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available |
---|