Cargando…

Collectivity in the light radon nuclei measured directly via Coulomb excitation

Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purp...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaffney, L.P., Robinson, A.P., Jenkins, D.G., Andreyev, A.N., Bender, M., Blazhev, A., Bree, N., Bruyneel, B., Butler, P.A., Cocolios, T.E., Davinson, T., Deacon, A.N., De Witte, H., DiJulio, D., Diriken, J., Ekström, A., Fransen, Ch., Freeman, S.J., Geibel, K., Grahn, T., Hadinia, B., Hass, M., Heenen, P. -H., Hess, H., Huyse, M., Jakobsson, U., Kesteloot, N., Konki, J., Kröll, Th., Kumar, V., Ivanov, O., Martin-Haugh, S., Mücher, D., Orlandi, R., Pakarinen, J., Petts, A., Peura, P., Rahkila, P., Reiter, P., Scheck, M., Seidlitz, M., Singh, K., Smith, J.F., Van de Walle, J., Van Duppen, P., Voulot, D., Wadsworth, R., Warr, N., Wenander, F., Wimmer, K., Wrzosek-Lipska, K., Zielińska, M.
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevC.91.064313
http://cds.cern.ch/record/2001403
_version_ 1780946026765484032
author Gaffney, L.P.
Robinson, A.P.
Jenkins, D.G.
Andreyev, A.N.
Bender, M.
Blazhev, A.
Bree, N.
Bruyneel, B.
Butler, P.A.
Cocolios, T.E.
Davinson, T.
Deacon, A.N.
De Witte, H.
DiJulio, D.
Diriken, J.
Ekström, A.
Fransen, Ch.
Freeman, S.J.
Geibel, K.
Grahn, T.
Hadinia, B.
Hass, M.
Heenen, P. -H.
Hess, H.
Huyse, M.
Jakobsson, U.
Kesteloot, N.
Konki, J.
Kröll, Th.
Kumar, V.
Ivanov, O.
Martin-Haugh, S.
Mücher, D.
Orlandi, R.
Pakarinen, J.
Petts, A.
Peura, P.
Rahkila, P.
Reiter, P.
Scheck, M.
Seidlitz, M.
Singh, K.
Smith, J.F.
Van de Walle, J.
Van Duppen, P.
Voulot, D.
Wadsworth, R.
Warr, N.
Wenander, F.
Wimmer, K.
Wrzosek-Lipska, K.
Zielińska, M.
author_facet Gaffney, L.P.
Robinson, A.P.
Jenkins, D.G.
Andreyev, A.N.
Bender, M.
Blazhev, A.
Bree, N.
Bruyneel, B.
Butler, P.A.
Cocolios, T.E.
Davinson, T.
Deacon, A.N.
De Witte, H.
DiJulio, D.
Diriken, J.
Ekström, A.
Fransen, Ch.
Freeman, S.J.
Geibel, K.
Grahn, T.
Hadinia, B.
Hass, M.
Heenen, P. -H.
Hess, H.
Huyse, M.
Jakobsson, U.
Kesteloot, N.
Konki, J.
Kröll, Th.
Kumar, V.
Ivanov, O.
Martin-Haugh, S.
Mücher, D.
Orlandi, R.
Pakarinen, J.
Petts, A.
Peura, P.
Rahkila, P.
Reiter, P.
Scheck, M.
Seidlitz, M.
Singh, K.
Smith, J.F.
Van de Walle, J.
Van Duppen, P.
Voulot, D.
Wadsworth, R.
Warr, N.
Wenander, F.
Wimmer, K.
Wrzosek-Lipska, K.
Zielińska, M.
author_sort Gaffney, L.P.
collection CERN
description Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purpose: Evidence for shape coexistence has been inferred from α-decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of Rn202 and Rn204 were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E2) matrix element connecting the ground state and first excited 21+ state was extracted for both Rn202 and Rn204, corresponding to B(E2;21+→01+)=29−8+8 and 43−12+17 W.u., respectively. Additionally, E2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in Rn202. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available
id cern-2001403
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
record_format invenio
spelling cern-20014032021-09-03T02:11:52Zdoi:10.1103/PhysRevC.91.064313http://cds.cern.ch/record/2001403engGaffney, L.P.Robinson, A.P.Jenkins, D.G.Andreyev, A.N.Bender, M.Blazhev, A.Bree, N.Bruyneel, B.Butler, P.A.Cocolios, T.E.Davinson, T.Deacon, A.N.De Witte, H.DiJulio, D.Diriken, J.Ekström, A.Fransen, Ch.Freeman, S.J.Geibel, K.Grahn, T.Hadinia, B.Hass, M.Heenen, P. -H.Hess, H.Huyse, M.Jakobsson, U.Kesteloot, N.Konki, J.Kröll, Th.Kumar, V.Ivanov, O.Martin-Haugh, S.Mücher, D.Orlandi, R.Pakarinen, J.Petts, A.Peura, P.Rahkila, P.Reiter, P.Scheck, M.Seidlitz, M.Singh, K.Smith, J.F.Van de Walle, J.Van Duppen, P.Voulot, D.Wadsworth, R.Warr, N.Wenander, F.Wimmer, K.Wrzosek-Lipska, K.Zielińska, M.Collectivity in the light radon nuclei measured directly via Coulomb excitationNuclear Physics - ExperimentBackground: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purpose: Evidence for shape coexistence has been inferred from α-decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of Rn202 and Rn204 were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E2) matrix element connecting the ground state and first excited 21+ state was extracted for both Rn202 and Rn204, corresponding to B(E2;21+→01+)=29−8+8 and 43−12+17 W.u., respectively. Additionally, E2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in Rn202. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around $Z=82$ and the neutron mid-shell at $N=104$. Purpose: Evidence for shape coexistence has been inferred from $\alpha$-decay measurements, laser spectroscopy and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of $^{202}$Rn and $^{204}$Rn were studied by means of low-energy Coulomb excitation at the REX-ISOLDE facility in CERN. Results: The electric-quadrupole ($E2$) matrix element connecting the ground state and first-excited $2^{+}_{1}$ state was extracted for both $^{202}$Rn and $^{204}$Rn, corresponding to ${B(E2;2^{+}_{1} \to 2^{+}_{1})=29^{+8}_{-8}}$ W.u. and $43^{+17}_{-12}$ W.u., respectively. Additionally, $E2$ matrix elements connecting the $2^{+}_{1}$ state with the $4^{+}_{1}$ and $2^{+}_{2}$ states were determined in $^{202}$Rn. No excited $0^{+}$ states were observed in the current data set, possibly due to a limited population of second-order processes at the currently-available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.arXiv:1503.03245oai:cds.cern.ch:20014032015-03-11
spellingShingle Nuclear Physics - Experiment
Gaffney, L.P.
Robinson, A.P.
Jenkins, D.G.
Andreyev, A.N.
Bender, M.
Blazhev, A.
Bree, N.
Bruyneel, B.
Butler, P.A.
Cocolios, T.E.
Davinson, T.
Deacon, A.N.
De Witte, H.
DiJulio, D.
Diriken, J.
Ekström, A.
Fransen, Ch.
Freeman, S.J.
Geibel, K.
Grahn, T.
Hadinia, B.
Hass, M.
Heenen, P. -H.
Hess, H.
Huyse, M.
Jakobsson, U.
Kesteloot, N.
Konki, J.
Kröll, Th.
Kumar, V.
Ivanov, O.
Martin-Haugh, S.
Mücher, D.
Orlandi, R.
Pakarinen, J.
Petts, A.
Peura, P.
Rahkila, P.
Reiter, P.
Scheck, M.
Seidlitz, M.
Singh, K.
Smith, J.F.
Van de Walle, J.
Van Duppen, P.
Voulot, D.
Wadsworth, R.
Warr, N.
Wenander, F.
Wimmer, K.
Wrzosek-Lipska, K.
Zielińska, M.
Collectivity in the light radon nuclei measured directly via Coulomb excitation
title Collectivity in the light radon nuclei measured directly via Coulomb excitation
title_full Collectivity in the light radon nuclei measured directly via Coulomb excitation
title_fullStr Collectivity in the light radon nuclei measured directly via Coulomb excitation
title_full_unstemmed Collectivity in the light radon nuclei measured directly via Coulomb excitation
title_short Collectivity in the light radon nuclei measured directly via Coulomb excitation
title_sort collectivity in the light radon nuclei measured directly via coulomb excitation
topic Nuclear Physics - Experiment
url https://dx.doi.org/10.1103/PhysRevC.91.064313
http://cds.cern.ch/record/2001403
work_keys_str_mv AT gaffneylp collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT robinsonap collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT jenkinsdg collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT andreyevan collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT benderm collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT blazheva collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT breen collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT bruyneelb collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT butlerpa collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT cocolioste collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT davinsont collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT deaconan collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT dewitteh collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT dijuliod collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT dirikenj collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT ekstroma collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT fransench collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT freemansj collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT geibelk collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT grahnt collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT hadiniab collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT hassm collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT heenenph collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT hessh collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT huysem collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT jakobssonu collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT kestelootn collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT konkij collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT krollth collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT kumarv collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT ivanovo collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT martinhaughs collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT mucherd collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT orlandir collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT pakarinenj collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT pettsa collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT peurap collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT rahkilap collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT reiterp collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT scheckm collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT seidlitzm collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT singhk collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT smithjf collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT vandewallej collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT vanduppenp collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT voulotd collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT wadsworthr collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT warrn collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT wenanderf collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT wimmerk collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT wrzoseklipskak collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation
AT zielinskam collectivityinthelightradonnucleimeasureddirectlyviacoulombexcitation