Cargando…

Radiation resistance of double-type double-sided 3D pixel sensors

The proposed high-luminosity upgrade of the Large Hadron Collider is expected to increase the instantaneous luminosity at the experiments' interaction points by a factor of ten. The vertex detector will be the subsystem most affected by the luminosity increase, raising substantially their occup...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandez, M, Jaramillo, R, Lozano, M, Munoz, F.J, Pellegrini, G, Quirion, D, Rohe, T, Vila, I
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: Nucl. Instrum. Methods Phys. Res., A 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.nima.2013.05.121
http://cds.cern.ch/record/2002661
Descripción
Sumario:The proposed high-luminosity upgrade of the Large Hadron Collider is expected to increase the instantaneous luminosity at the experiments' interaction points by a factor of ten. The vertex detector will be the subsystem most affected by the luminosity increase, raising substantially their occupancy and radiation-induced damage. To preserve the vertex physics performance under these new conditions, current pixel technologies have to be improved. Hybrid pixel sensors with double-sided double-type vertical electrodes (3D sensors) are becoming a mature technology for the detector layers closest to the interaction point due to their intrinsic radiation hardness. In addition, the double-sided implementation of the 3D pixel technology provides some additional technical advantages with respect to the single-sided implementation. For this study, 3D pixel sensors manufactured at the Centro Nacional de Microelectrónica of Barcelona (IMB-CNM) have been bonded to the PSI46 readout chip currently used by the Compact Muon Solenoid vertex detector. Detector performance before and after irradiation up to fluences of 5x10^15 neq/cm^2 is presented.