Cargando…
$\alpha_s$ determination at NNLO$^\star$+NNLL accuracy from the energy evolution of jet fragmentation functions at low $z$
The QCD coupling $\alpha_s$ is extracted from the energy evolution of the first two moments (multiplicity and mean) of the parton-to-hadron fragmentation functions at low fractional hadron momentum $z$. Comparisons of the experimental $e^+e^-$ and deep-inelastic $e^\pm$p jet data to our NNLO$^*$+NNL...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2015664 |
Sumario: | The QCD coupling $\alpha_s$ is extracted from the energy evolution of the first two moments (multiplicity and mean) of the parton-to-hadron fragmentation functions at low fractional hadron momentum $z$. Comparisons of the experimental $e^+e^-$ and deep-inelastic $e^\pm$p jet data to our NNLO$^*$+NNLL predictions, allow us to obtain $\alpha_s(m_{_{\rm Z}})$ = 0.1205$\pm$0.0010$^{+0.0022}_{-0.0000}$, in excellent agreement with the current world average determined using other methods at the same level of accuracy. |
---|