Cargando…

Nonlinear time series: theory, methods and applications with R examples

FOUNDATIONSLinear ModelsStochastic Processes The Covariance World Linear Processes The Multivariate Cases Numerical Examples ExercisesLinear Gaussian State Space Models Model Basics Filtering, Smoothing, and Forecasting Maximum Likelihood Estimation Smoothing Splines and the Kalman Smoother Asymptot...

Descripción completa

Detalles Bibliográficos
Autores principales: Douc, Randal, Moulines, Eric, Stoffer, David
Lenguaje:eng
Publicado: CRC Press 2014
Materias:
Acceso en línea:http://cds.cern.ch/record/2018937
Descripción
Sumario:FOUNDATIONSLinear ModelsStochastic Processes The Covariance World Linear Processes The Multivariate Cases Numerical Examples ExercisesLinear Gaussian State Space Models Model Basics Filtering, Smoothing, and Forecasting Maximum Likelihood Estimation Smoothing Splines and the Kalman Smoother Asymptotic Distribution of the MLE Missing Data Modifications Structural Component Models State-Space Models with Correlated Errors Exercises Beyond Linear ModelsNonlinear Non-Gaussian Data Volterra Series Expansion Cumulants and Higher-Order Spectra Bilinear Models Conditionally Heteroscedastic Models Thre