Cargando…

Essentials of topology with applications

Fundamentals What Is Topology? First Definitions Mappings The Separation Axioms Compactness Homeomorphisms Connectedness Path-Connectedness Continua Totally Disconnected Spaces The Cantor Set Metric Spaces Metrizability Baire's Theorem Lebesgue's Lemma and Lebesgue NumbersAdvanced Properti...

Descripción completa

Detalles Bibliográficos
Autor principal: Krantz, Steven G
Lenguaje:eng
Publicado: CRC Press 2009
Materias:
Acceso en línea:http://cds.cern.ch/record/2018994
Descripción
Sumario:Fundamentals What Is Topology? First Definitions Mappings The Separation Axioms Compactness Homeomorphisms Connectedness Path-Connectedness Continua Totally Disconnected Spaces The Cantor Set Metric Spaces Metrizability Baire's Theorem Lebesgue's Lemma and Lebesgue NumbersAdvanced Properties of Topological Spaces Basis and Sub-Basis Product Spaces Relative Topology First Countable, Second Countable, and So ForthCompactifications Quotient Topologies Uniformities Morse Theory Proper Mappings Paracompactness An Application to Digital ImagingBasic Algebraic Topology Homotopy Theory Homology Theory