Cargando…

Moduli of weighted hyperplane arrangements

This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces p...

Descripción completa

Detalles Bibliográficos
Autores principales: Bini, Gilberto, Lahoz, Martí, Macrí, Emanuele, Stellari, Paolo
Lenguaje:eng
Publicado: Springer 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-0348-0915-3
http://cds.cern.ch/record/2021015
_version_ 1780946880154304512
author Bini, Gilberto
Lahoz, Martí
Macrí, Emanuele
Stellari, Paolo
author_facet Bini, Gilberto
Lahoz, Martí
Macrí, Emanuele
Stellari, Paolo
author_sort Bini, Gilberto
collection CERN
description This book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements.
id cern-2021015
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher Springer
record_format invenio
spelling cern-20210152021-04-21T20:16:47Zdoi:10.1007/978-3-0348-0915-3http://cds.cern.ch/record/2021015engBini, GilbertoLahoz, MartíMacrí, EmanueleStellari, PaoloModuli of weighted hyperplane arrangementsMathematical Physics and MathematicsThis book focuses on a large class of geometric objects in moduli theory and provides explicit computations to investigate their families. Concrete examples are developed that take advantage of the intricate interplay between Algebraic Geometry and Combinatorics. Compactifications of moduli spaces play a crucial role in Number Theory, String Theory, and Quantum Field Theory – to mention just a few. In particular, the notion of compactification of moduli spaces has been crucial for solving various open problems and long-standing conjectures. Further, the book reports on compactification techniques for moduli spaces in a large class where computations are possible, namely that of weighted stable hyperplane arrangements.Springeroai:cds.cern.ch:20210152015
spellingShingle Mathematical Physics and Mathematics
Bini, Gilberto
Lahoz, Martí
Macrí, Emanuele
Stellari, Paolo
Moduli of weighted hyperplane arrangements
title Moduli of weighted hyperplane arrangements
title_full Moduli of weighted hyperplane arrangements
title_fullStr Moduli of weighted hyperplane arrangements
title_full_unstemmed Moduli of weighted hyperplane arrangements
title_short Moduli of weighted hyperplane arrangements
title_sort moduli of weighted hyperplane arrangements
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-0348-0915-3
http://cds.cern.ch/record/2021015
work_keys_str_mv AT binigilberto moduliofweightedhyperplanearrangements
AT lahozmarti moduliofweightedhyperplanearrangements
AT macriemanuele moduliofweightedhyperplanearrangements
AT stellaripaolo moduliofweightedhyperplanearrangements