Cargando…

Homologie des algèbres commutatives

(egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo­ logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohom...

Descripción completa

Detalles Bibliográficos
Autor principal: Andrè, Michel
Lenguaje:fre
Publicado: Springer 1974
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-51449-4
http://cds.cern.ch/record/2023441
_version_ 1780947072032178176
author Andrè, Michel
author_facet Andrè, Michel
author_sort Andrè, Michel
collection CERN
description (egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo­ logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohomologie d'une algebre libre sont triviales (corollaire 3. 36). Quant au module Ho(A,B,B) il est toujours isomorphe au module des differentielles de Kaehler QBIA (proposition 6. 3). Lorsque l'anneau Best un quotient de l'anneau A, la situation est simple en degre 1 (proposition 6. 1) H (A, B, W) ~ Tor}(B, W) I et en degre 2 (theoreme 15. 8, propositions 15. 9 et 15. 12) H (A,B, W) ~ Tor1(B, W)jTor}(B,B). Tor}(B, W). 2 En ajoutant des variables independantes a l'anneau A, il est d'ailleurs possible de se ramener a ce cas particulier (corollaire 5. 2). Dans cette theorie, les modules d'homologie relative sont en fait des modules d'homologie absolue. De maniere precise: a une A-algebre B et a une B-algebre C correspond une suite exacte, dite de Jacobi­ Zariski (theoreme 5. 1) . . . --+ Hn(A,B, W) --+ Hn(A, C, W) --+ Hn(B, C, W) -+ H _ I (A, B, W) --+ •••• n De cette suite decoulent des relations entre differentielles de Kaehler (n = 0), algebres lisses (n = 1), anneaux reguliers (n = 2) et intersections completes (n = 3). Une autre propriete fondamentale est la suivante (proposition 4.
id cern-2023441
institution Organización Europea para la Investigación Nuclear
language fre
publishDate 1974
publisher Springer
record_format invenio
spelling cern-20234412021-04-21T20:13:19Zdoi:10.1007/978-3-642-51449-4http://cds.cern.ch/record/2023441freAndrè, MichelHomologie des algèbres commutativesMathematical Physics and Mathematics(egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo­ logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohomologie d'une algebre libre sont triviales (corollaire 3. 36). Quant au module Ho(A,B,B) il est toujours isomorphe au module des differentielles de Kaehler QBIA (proposition 6. 3). Lorsque l'anneau Best un quotient de l'anneau A, la situation est simple en degre 1 (proposition 6. 1) H (A, B, W) ~ Tor}(B, W) I et en degre 2 (theoreme 15. 8, propositions 15. 9 et 15. 12) H (A,B, W) ~ Tor1(B, W)jTor}(B,B). Tor}(B, W). 2 En ajoutant des variables independantes a l'anneau A, il est d'ailleurs possible de se ramener a ce cas particulier (corollaire 5. 2). Dans cette theorie, les modules d'homologie relative sont en fait des modules d'homologie absolue. De maniere precise: a une A-algebre B et a une B-algebre C correspond une suite exacte, dite de Jacobi­ Zariski (theoreme 5. 1) . . . --+ Hn(A,B, W) --+ Hn(A, C, W) --+ Hn(B, C, W) -+ H _ I (A, B, W) --+ •••• n De cette suite decoulent des relations entre differentielles de Kaehler (n = 0), algebres lisses (n = 1), anneaux reguliers (n = 2) et intersections completes (n = 3). Une autre propriete fondamentale est la suivante (proposition 4.Springeroai:cds.cern.ch:20234411974
spellingShingle Mathematical Physics and Mathematics
Andrè, Michel
Homologie des algèbres commutatives
title Homologie des algèbres commutatives
title_full Homologie des algèbres commutatives
title_fullStr Homologie des algèbres commutatives
title_full_unstemmed Homologie des algèbres commutatives
title_short Homologie des algèbres commutatives
title_sort homologie des algèbres commutatives
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-51449-4
http://cds.cern.ch/record/2023441
work_keys_str_mv AT andremichel homologiedesalgebrescommutatives