Cargando…
Homologie des algèbres commutatives
(egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohom...
Autor principal: | |
---|---|
Lenguaje: | fre |
Publicado: |
Springer
1974
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-51449-4 http://cds.cern.ch/record/2023441 |
_version_ | 1780947072032178176 |
---|---|
author | Andrè, Michel |
author_facet | Andrè, Michel |
author_sort | Andrè, Michel |
collection | CERN |
description | (egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohomologie d'une algebre libre sont triviales (corollaire 3. 36). Quant au module Ho(A,B,B) il est toujours isomorphe au module des differentielles de Kaehler QBIA (proposition 6. 3). Lorsque l'anneau Best un quotient de l'anneau A, la situation est simple en degre 1 (proposition 6. 1) H (A, B, W) ~ Tor}(B, W) I et en degre 2 (theoreme 15. 8, propositions 15. 9 et 15. 12) H (A,B, W) ~ Tor1(B, W)jTor}(B,B). Tor}(B, W). 2 En ajoutant des variables independantes a l'anneau A, il est d'ailleurs possible de se ramener a ce cas particulier (corollaire 5. 2). Dans cette theorie, les modules d'homologie relative sont en fait des modules d'homologie absolue. De maniere precise: a une A-algebre B et a une B-algebre C correspond une suite exacte, dite de Jacobi Zariski (theoreme 5. 1) . . . --+ Hn(A,B, W) --+ Hn(A, C, W) --+ Hn(B, C, W) -+ H _ I (A, B, W) --+ •••• n De cette suite decoulent des relations entre differentielles de Kaehler (n = 0), algebres lisses (n = 1), anneaux reguliers (n = 2) et intersections completes (n = 3). Une autre propriete fondamentale est la suivante (proposition 4. |
id | cern-2023441 |
institution | Organización Europea para la Investigación Nuclear |
language | fre |
publishDate | 1974 |
publisher | Springer |
record_format | invenio |
spelling | cern-20234412021-04-21T20:13:19Zdoi:10.1007/978-3-642-51449-4http://cds.cern.ch/record/2023441freAndrè, MichelHomologie des algèbres commutativesMathematical Physics and Mathematics(egalite 3. 4). Ce complexe T*(A,B) per met de definir les modules d'homo logie de l'algebre (definition 3. 11) Hn(A,B, W) = Yt,,[T*(A,B)@B W] et les modules de cohomologie de l'algebre (definition 3. 12) Hn(A,B, W) = Yfn[HomB(T*(A,B), W)]. En particulier l'homologie et la cohomologie d'une algebre libre sont triviales (corollaire 3. 36). Quant au module Ho(A,B,B) il est toujours isomorphe au module des differentielles de Kaehler QBIA (proposition 6. 3). Lorsque l'anneau Best un quotient de l'anneau A, la situation est simple en degre 1 (proposition 6. 1) H (A, B, W) ~ Tor}(B, W) I et en degre 2 (theoreme 15. 8, propositions 15. 9 et 15. 12) H (A,B, W) ~ Tor1(B, W)jTor}(B,B). Tor}(B, W). 2 En ajoutant des variables independantes a l'anneau A, il est d'ailleurs possible de se ramener a ce cas particulier (corollaire 5. 2). Dans cette theorie, les modules d'homologie relative sont en fait des modules d'homologie absolue. De maniere precise: a une A-algebre B et a une B-algebre C correspond une suite exacte, dite de Jacobi Zariski (theoreme 5. 1) . . . --+ Hn(A,B, W) --+ Hn(A, C, W) --+ Hn(B, C, W) -+ H _ I (A, B, W) --+ •••• n De cette suite decoulent des relations entre differentielles de Kaehler (n = 0), algebres lisses (n = 1), anneaux reguliers (n = 2) et intersections completes (n = 3). Une autre propriete fondamentale est la suivante (proposition 4.Springeroai:cds.cern.ch:20234411974 |
spellingShingle | Mathematical Physics and Mathematics Andrè, Michel Homologie des algèbres commutatives |
title | Homologie des algèbres commutatives |
title_full | Homologie des algèbres commutatives |
title_fullStr | Homologie des algèbres commutatives |
title_full_unstemmed | Homologie des algèbres commutatives |
title_short | Homologie des algèbres commutatives |
title_sort | homologie des algèbres commutatives |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-642-51449-4 http://cds.cern.ch/record/2023441 |
work_keys_str_mv | AT andremichel homologiedesalgebrescommutatives |