Cargando…

Bifurcation theory for hexagonal agglomeration in economic geography

This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organ...

Descripción completa

Detalles Bibliográficos
Autores principales: Ikeda, Kiyohiro, Murota, Kazuo
Lenguaje:eng
Publicado: Springer 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-4-431-54258-2
http://cds.cern.ch/record/2023499
_version_ 1780947084242845696
author Ikeda, Kiyohiro
Murota, Kazuo
author_facet Ikeda, Kiyohiro
Murota, Kazuo
author_sort Ikeda, Kiyohiro
collection CERN
description This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.
id cern-2023499
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher Springer
record_format invenio
spelling cern-20234992021-04-21T20:13:00Zdoi:10.1007/978-4-431-54258-2http://cds.cern.ch/record/2023499engIkeda, KiyohiroMurota, KazuoBifurcation theory for hexagonal agglomeration in economic geographyEngineeringThis book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distributed places, and the symmetry of this lattice is expressed by a finite group. Several mathematical methodologies indispensable for tackling the present problem are gathered in a self-contained manner. The existence of hexagonal distributions is verified by group-theoretic bifurcation analysis, first by applying the so-called equivariant branching lemma and next by solving the bifurcation equation. This book offers a complete guide for the application of group-theoretic bifurcation analysis to economic agglomeration on the hexagonal lattice.Springeroai:cds.cern.ch:20234992014
spellingShingle Engineering
Ikeda, Kiyohiro
Murota, Kazuo
Bifurcation theory for hexagonal agglomeration in economic geography
title Bifurcation theory for hexagonal agglomeration in economic geography
title_full Bifurcation theory for hexagonal agglomeration in economic geography
title_fullStr Bifurcation theory for hexagonal agglomeration in economic geography
title_full_unstemmed Bifurcation theory for hexagonal agglomeration in economic geography
title_short Bifurcation theory for hexagonal agglomeration in economic geography
title_sort bifurcation theory for hexagonal agglomeration in economic geography
topic Engineering
url https://dx.doi.org/10.1007/978-4-431-54258-2
http://cds.cern.ch/record/2023499
work_keys_str_mv AT ikedakiyohiro bifurcationtheoryforhexagonalagglomerationineconomicgeography
AT murotakazuo bifurcationtheoryforhexagonalagglomerationineconomicgeography