Cargando…
Simultaneous triangularization
A collection of matrices is said to be triangularizable if there is an invertible matrix S such that S1 AS is upper triangular for every A in the collection. This generalization of commutativity is the subject of many classical theorems due to Engel, Kolchin, Kaplansky, McCoy and others. The concept...
Autores principales: | Radjavi, Heydar, Rosenthal, Peter |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2000
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-1-4612-1200-3 http://cds.cern.ch/record/2023549 |
Ejemplares similares
-
Invariant subspaces
por: Radjavi, Heydar, et al.
Publicado: (1973) -
Triangular norms
por: Klement, Erich Peter, et al.
Publicado: (2000) -
Irreducible triangular algebras
por: Solel, Baruch
Publicado: (1984) -
Triangular products of group representations and their applications
por: Vovsi, Samuel M
Publicado: (1981) -
Triangular algebras and ideals of nest algebras
por: Orr, John Lindsay
Publicado: (1995)