Cargando…
Generalized convexity, generalized monotonicity recent results
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here...
Autores principales: | Crouzeix, Jean-Pierre, Martinez-Legaz, Juan-Enrique, Volle, Michel |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
1998
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-1-4613-3341-8 http://cds.cern.ch/record/2023775 |
Ejemplares similares
-
6th International Symposium on Generalized Convexity/Monotonicity
por: Hadjisavvas, Nicolas, et al.
Publicado: (2001) -
Handbook of Generalized Convexity and Generalized Monotonicity
por: Hadjisavvas, Nicolas, et al.
Publicado: (2005) -
7th International Symposium on Generalized Convexity and Generalized Monotonicity
por: Eberhard, Andrew, et al.
Publicado: (2005) -
Convex functions, monotone operators and differentiability
por: Phelps, Robert R
Publicado: (1989) -
Convex functions, monotone operators and differentiability
por: Phelps, Robert R
Publicado: (1993)