Cargando…
8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications
The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Tai...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2001
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-0348-8370-2 https://dx.doi.org/10.1007/978-3-0348-8372-6 http://cds.cern.ch/record/2027791 |
_version_ | 1780947318317514752 |
---|---|
author | Freistühler, Heinrich Warnecke, Gerald |
author_facet | Freistühler, Heinrich Warnecke, Gerald |
author_sort | Freistühler, Heinrich |
collection | CERN |
description | The Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computation is of fundamental importance. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended ther modynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability ofshock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite ele ment schemes, adaptive, multiresolution, and artificial dissipation methods. |
id | cern-2027791 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2001 |
publisher | Springer |
record_format | invenio |
spelling | cern-20277912021-04-22T06:52:15Zdoi:10.1007/978-3-0348-8370-2doi:10.1007/978-3-0348-8372-6http://cds.cern.ch/record/2027791engFreistühler, HeinrichWarnecke, Gerald8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications8th International Conference on Hyperbolic Problems : Theory, Numerics, ApplicationsMathematical Physics and MathematicsThe Eighth International Conference on Hyperbolic Problems - Theory, Nu merics, Applications, was held in Magdeburg, Germany, from February 27 to March 3, 2000. It was attended by over 220 participants from many European countries as well as Brazil, Canada, China, Georgia, India, Israel, Japan, Taiwan, und the USA. There were 12 plenary lectures, 22 further invited talks, and around 150 con tributed talks in parallel sessions as well as posters. The speakers in the parallel sessions were invited to provide a poster in order to enhance the dissemination of information. Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. Despite considerable progress, the mathematical theory is still strug gling with fundamental open problems concerning systems of such equations in multiple space dimensions. For various applications the development of accurate and efficient numerical schemes for computation is of fundamental importance. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended ther modynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability ofshock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite ele ment schemes, adaptive, multiresolution, and artificial dissipation methods.Springeroai:cds.cern.ch:20277912001 |
spellingShingle | Mathematical Physics and Mathematics Freistühler, Heinrich Warnecke, Gerald 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications |
title | 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications |
title_full | 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications |
title_fullStr | 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications |
title_full_unstemmed | 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications |
title_short | 8th International Conference on Hyperbolic Problems : Theory, Numerics, Applications |
title_sort | 8th international conference on hyperbolic problems : theory, numerics, applications |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-0348-8370-2 https://dx.doi.org/10.1007/978-3-0348-8372-6 http://cds.cern.ch/record/2027791 |
work_keys_str_mv | AT freistuhlerheinrich 8thinternationalconferenceonhyperbolicproblemstheorynumericsapplications AT warneckegerald 8thinternationalconferenceonhyperbolicproblemstheorynumericsapplications |