Cargando…
Low Q^2 Weak Mixing Angle Measurements and Rare Higgs Decays
A weighted average weak mixing angle theta_W derived from relatively low Q^2 experiments is compared with the Standard Model prediction obtained from precision measurements. The approximate 1.8 sigma discrepancy is fit with an intermediate mass (~ 10-35 GeV) "dark" Z boson Z_d, correspondi...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.92.055005 http://cds.cern.ch/record/2030725 |
Sumario: | A weighted average weak mixing angle theta_W derived from relatively low Q^2 experiments is compared with the Standard Model prediction obtained from precision measurements. The approximate 1.8 sigma discrepancy is fit with an intermediate mass (~ 10-35 GeV) "dark" Z boson Z_d, corresponding to a U(1)_d gauge symmetry of hidden dark matter, which couples to our world via kinetic and Z-Z_d mass mixing. Constraints on such a scenario are obtained from precision electroweak bounds and searches for the rare Higgs decays H -> Z Z_d -> 4 charged leptons at the LHC. The sensitivity of future anticipated low Q^2 measurements of sin^2 theta_W(Q^2) to intermediate mass Z_d is also illustrated. This dark Z scenario can provide interesting concomitant signals in low energy parity violating measurements and rare Higgs decays at the LHC, over the next few years. |
---|