Cargando…
Stochastic analysis for gaussian random processes and fields: with applications
Stochastic Analysis for Gaussian Random Processes and Fields: With Applications presents Hilbert space methods to study deep analytic properties connecting probabilistic notions. In particular, it studies Gaussian random fields using reproducing kernel Hilbert spaces (RKHSs).The book begins with pre...
Autores principales: | Mandrekar, Vidyadhar S, Gawarecki, Leszek |
---|---|
Lenguaje: | eng |
Publicado: |
CRC Press
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2032043 |
Ejemplares similares
-
Stochastic Differential Equations in Infinite Dimensions: with Applications to Stochastic Partial Differential Equations
por: Gawarecki, Leszek, et al.
Publicado: (2011) -
Stochastic integration in Banach spaces: theory and applications
por: Mandrekar, Vidyadhar, et al.
Publicado: (2015) -
Weakly stationary random fields, invariant subspaces and applications
por: Mandrekar, Vidyadhar S, et al.
Publicado: (2017) -
Stochastic analysis of mixed fractional Gaussian processes
por: Mishura, Yuliya, et al.
Publicado: (2018) -
Stable non-Gaussian random processes: stochastic models with infinite variance
por: Samoradnitsky, Gennady, et al.
Publicado: (1994)