Cargando…

Global aspects of classical integrable systems

This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in...

Descripción completa

Detalles Bibliográficos
Autores principales: Cushman, Richard H, Bates, Larry M
Lenguaje:eng
Publicado: Birkhaüser 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-0348-0918-4
http://cds.cern.ch/record/2032397
_version_ 1780947539409764352
author Cushman, Richard H
Bates, Larry M
author_facet Cushman, Richard H
Bates, Larry M
author_sort Cushman, Richard H
collection CERN
description This book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.
id cern-2032397
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher Birkhaüser
record_format invenio
spelling cern-20323972021-04-21T20:09:51Zdoi:10.1007/978-3-0348-0918-4http://cds.cern.ch/record/2032397engCushman, Richard HBates, Larry MGlobal aspects of classical integrable systemsMathematical Physics and MathematicsThis book gives a uniquely complete description of the geometry of the energy momentum mapping of five classical integrable systems: the 2-dimensional harmonic oscillator, the geodesic flow on the 3-sphere, the Euler top, the spherical pendulum and the Lagrange top. It presents for the first time in book form a general theory of symmetry reduction which allows one to reduce the symmetries in the spherical pendulum and the Lagrange top. Also the monodromy obstruction to the existence of global action angle coordinates is calculated for the spherical pendulum and the Lagrange top. The book addresses professional mathematicians and graduate students and can be used as a textbook on advanced classical mechanics or global analysis.Birkhaüseroai:cds.cern.ch:20323972015
spellingShingle Mathematical Physics and Mathematics
Cushman, Richard H
Bates, Larry M
Global aspects of classical integrable systems
title Global aspects of classical integrable systems
title_full Global aspects of classical integrable systems
title_fullStr Global aspects of classical integrable systems
title_full_unstemmed Global aspects of classical integrable systems
title_short Global aspects of classical integrable systems
title_sort global aspects of classical integrable systems
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-0348-0918-4
http://cds.cern.ch/record/2032397
work_keys_str_mv AT cushmanrichardh globalaspectsofclassicalintegrablesystems
AT bateslarrym globalaspectsofclassicalintegrablesystems