Cargando…
Learning with partially labeled and interdependent data
This book develops two key machine learning principles: the semi-supervised paradigm and learning with interdependent data. It reveals new applications, primarily web related, that transgress the classical machine learning framework through learning with interdependent data. The book traces how t...
Autores principales: | Amini, Massih-Reza, Usunier, Nicolas |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2042994 |
Ejemplares similares
-
Characterizing interdependencies of multiple time series: theory and applications
por: Hosoya, Yuzo, et al.
Publicado: (2017) -
Optimal subset selection: multiple regression, interdependence and optimal network algorithms
por: Boyce, David E, et al.
Publicado: (1974) -
The interdependence of corporate reputation and ownership: a network approach to quantify reputation
por: Zhang, Yan, et al.
Publicado: (2019) -
Metric methods for analyzing partially ranked data
por: Critchlow, Douglas E
Publicado: (1985) -
Bayesian inference for partially identified models: exploring the limits of limited data
por: Gustafson, Paul
Publicado: (2015)