Cargando…
Machine learning in radiation oncology: theory and applications
This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised...
Autores principales: | El Naqa, Issam, Li, Ruijiang, Murphy, Martin J |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2043017 |
Ejemplares similares
-
Editorial: Machine Learning With Radiation Oncology Big Data
por: Deng, Jun, et al.
Publicado: (2018) -
Radiation protection in medical imaging and radiation oncology
por: Vetter, Richard J, et al.
Publicado: (2016) -
Perez and Brady's Principles and Practice of Radiation Oncology
por: Halperin, Edward C, et al.
Publicado: (2008) -
Radiation oncology: a physicist's-eye view
por: Goitein, Michael
Publicado: (2007) -
On quantum theory of radiation
por: Petermann, Andreas
Publicado: (1963)