Cargando…
Precision Measurements of $H \rightarrow b\bar{b}$ Coupling from $e^{+}e^{-}$ Collisions
The proposed 80 to 100 km Future Circular Collider will be an ideal setup for studying properties of the newly-discovered Higgs boson with much more precision. Physics of $e^{+}e^{-}$ collisions are accessible at a center-of-mass energy of 90 to 350 GeV and high luminosity. The lepton collider, FCC-...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2044704 |
Sumario: | The proposed 80 to 100 km Future Circular Collider will be an ideal setup for studying properties of the newly-discovered Higgs boson with much more precision. Physics of $e^{+}e^{-}$ collisions are accessible at a center-of-mass energy of 90 to 350 GeV and high luminosity. The lepton collider, FCC-ee, may be used as an intermediate stage before pp collision to study decay channels of the Higgs at a center-of-mass energy of 240 GeV. The objective of this project is to search for the uncertainty of $H \rightarrow b\bar{b}$ coupling via event generation and simulation. Pythia8 was utilized in event generation, Delphes for CMS detector simulation, and ROOT for data analysis. After improving the b-tagging efficiency formula in CMS detector simulation, a C++/ROOT analysis was performed on the simulated data. Through this method, the $H \rightarrow b\bar{b}$ coupling was measured to be 6\% with an integrated luminosity of $500 fb^{-1}$ with $Z \rightarrow \mu^{+}\mu^{-}$, $H \rightarrow b\bar{b}$ decay. |
---|