Cargando…
Tracking by Neural Nets
Current track reconstruction methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tr...
Autor principal: | Jofrehei, Arash |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2048037 |
Ejemplares similares
-
Fast track finding with neural nets
por: Stimpfl, G, et al.
Publicado: (1990) -
Fast neural-net based fake track rejection in the LHCb reconstruction
por: De Cian, Michel, et al.
Publicado: (2017) -
Jet classification with GarNet
por: Leite, Julia Carvalho
Publicado: (2021) -
Alignment of LHCb tracking stations with tracks fitted with a Kalman filter
por: Nicolas, L, et al.
Publicado: (2008) -
Simulation and Track Reconstruction for Beam Telescopes
por: Maqbool, Salman
Publicado: (2017)