Cargando…

Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture

We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantizatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Burgess, C.P., Diener, Ross, Williams, M.
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP10(2015)177
http://cds.cern.ch/record/2052911
_version_ 1780948192624377856
author Burgess, C.P.
Diener, Ross
Williams, M.
author_facet Burgess, C.P.
Diener, Ross
Williams, M.
author_sort Burgess, C.P.
collection CERN
description We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, $\ell$, is exponentially large relative to underlying physics scales, $r_B$, with $\ell^2 = r_B^2 e^{- \varphi}$ where $-\varphi \gg 1$ can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.
id cern-2052911
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
record_format invenio
spelling cern-20529112023-10-04T06:50:46Zdoi:10.1007/JHEP10(2015)177http://cds.cern.ch/record/2052911engBurgess, C.P.Diener, RossWilliams, M.Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton CaptureParticle Physics - TheoryWe complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, $\ell$, is exponentially large relative to underlying physics scales, $r_B$, with $\ell^2 = r_B^2 e^{- \varphi}$ where $-\varphi \gg 1$ can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.We complete here a three-part study (see also arXiv:1506.08095 and arXiv:1508.00856 ) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse ‘bulk’ is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg’s theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, ℓ, is exponentially large relative to underlying physics scales, r$_{B}$ , with ℓ$^{2}$ = r$_{B}^{2}$ e$^{− }^{φ}$ where −φ ≫ 1 can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg's theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, $\ell$, is exponentially large relative to underlying physics scales, $r_B$, with $\ell^2 = r_B^2 e^{- \varphi}$ where $-\varphi \gg 1$ can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.arXiv:1509.04209oai:cds.cern.ch:20529112015-09-14
spellingShingle Particle Physics - Theory
Burgess, C.P.
Diener, Ross
Williams, M.
Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
title Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
title_full Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
title_fullStr Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
title_full_unstemmed Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
title_short Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
title_sort self-tuning at large (distances): 4d description of runaway dilaton capture
topic Particle Physics - Theory
url https://dx.doi.org/10.1007/JHEP10(2015)177
http://cds.cern.ch/record/2052911
work_keys_str_mv AT burgesscp selftuningatlargedistances4ddescriptionofrunawaydilatoncapture
AT dienerross selftuningatlargedistances4ddescriptionofrunawaydilatoncapture
AT williamsm selftuningatlargedistances4ddescriptionofrunawaydilatoncapture