Cargando…

Sensitivities of Prospective Future e+e- Colliders to Decoupled New Physics

We explore the indirect sensitivities to decoupled new physics of prospective precision electroweak measurements, triple-gauge-coupling measurements and Higgs physics at future $e^+e^-$ colliders, with emphasis on the ILC250 and FCC-ee. The Standard Model effective field theory (SM EFT) is adopted a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellis, John, You, Tevong
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP03(2016)089
http://cds.cern.ch/record/2059947
Descripción
Sumario:We explore the indirect sensitivities to decoupled new physics of prospective precision electroweak measurements, triple-gauge-coupling measurements and Higgs physics at future $e^+e^-$ colliders, with emphasis on the ILC250 and FCC-ee. The Standard Model effective field theory (SM EFT) is adopted as a model-independent approach for relating experimental precision projections to the scale of new physics, and we present prospective constraints on the Wilson coefficients of dimension-6 operators. We find that in a marginalised fit ILC250 EWPT measurements may be sensitive to new physics scales $\Lambda = \mathcal{O}(10)$~TeV, and FCC-ee EWPT measurements may be sensitive to $\Lambda = \mathcal{O}(30)$~TeV. The prospective sensitivities of Higgs and TGC measurements at the ILC250 (FCC-ee) are to $\Lambda = \mathcal{O}(1)$~TeV ($\Lambda = \mathcal{O}(2)$~TeV).