Cargando…

Meson Spectroscopy at COMPASS

The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral...

Descripción completa

Detalles Bibliográficos
Autor principal: Grube, Boris
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:http://cds.cern.ch/record/2062117
_version_ 1780948515688546304
author Grube, Boris
author_facet Grube, Boris
author_sort Grube, Boris
collection CERN
description The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\pi^-$) and positive ($p$, $\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\text{GeV}/c)^2$. The flagship channel is the $\pi^-\pi^+\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, the $a_1(1420)$, with unusual properties. Of particular interest is also the resonance content of the partial wave with spin-exotic $J^{PC} = 1^{-+}$ quantum numbers, which are forbidden for quark-antiquark states.
id cern-2062117
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
record_format invenio
spelling cern-20621172023-03-14T18:34:27Zhttp://cds.cern.ch/record/2062117engGrube, BorisMeson Spectroscopy at COMPASSParticle Physics - ExperimentThe COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\pi^-$) and positive ($p$, $\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\text{GeV}/c)^2$. The flagship channel is the $\pi^-\pi^+\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, the $a_1(1420)$, with unusual properties. Of particular interest is also the resonance content of the partial wave with spin-exotic $J^{PC} = 1^{-+}$ quantum numbers, which are forbidden for quark-antiquark states.The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. The two-stage spectrometer has a good acceptance for charged as well as neutral particles over a wide kinematic range and thus allows to access a wide range of reactions. Light mesons are studied with negative (mostly $\pi^-$) and positive ($p$, $\pi^+$) hadron beams with a momentum of 190 GeV/$c$. The spectrum of light mesons is investigated in various final states produced in diffractive dissociation reactions at squared four-momentum transfers to the target between 0.1 and 1.0 $(\text{GeV}/c)^2$. The flagship channel is the $\pi^-\pi^+\pi^-$ final state, for which COMPASS has recorded the currently largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new resonance-like signal, the $a_1(1420)$, with unusual properties. Of particular interest is also the resonance content of the partial wave with spin-exotic $J^{PC} = 1^{-+}$ quantum numbers, which are forbidden for quark-antiquark states.arXiv:1510.07032oai:cds.cern.ch:20621172015-10-23
spellingShingle Particle Physics - Experiment
Grube, Boris
Meson Spectroscopy at COMPASS
title Meson Spectroscopy at COMPASS
title_full Meson Spectroscopy at COMPASS
title_fullStr Meson Spectroscopy at COMPASS
title_full_unstemmed Meson Spectroscopy at COMPASS
title_short Meson Spectroscopy at COMPASS
title_sort meson spectroscopy at compass
topic Particle Physics - Experiment
url http://cds.cern.ch/record/2062117
work_keys_str_mv AT grubeboris mesonspectroscopyatcompass