Cargando…

Introduction to the theory of soft matter: from ideal gases to liquid crystals

This book presents the theory of soft matter to students at the advanced undergraduate or beginning graduate level. It provides a basic introduction to theoretical physics as applied to soft matter, explaining the concepts of symmetry, broken symmetry, and order parameters; phases and phase transiti...

Descripción completa

Detalles Bibliográficos
Autor principal: Selinger, Jonathan V
Lenguaje:eng
Publicado: Springer 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-21054-4
http://cds.cern.ch/record/2062568
_version_ 1780948543985418240
author Selinger, Jonathan V
author_facet Selinger, Jonathan V
author_sort Selinger, Jonathan V
collection CERN
description This book presents the theory of soft matter to students at the advanced undergraduate or beginning graduate level. It provides a basic introduction to theoretical physics as applied to soft matter, explaining the concepts of symmetry, broken symmetry, and order parameters; phases and phase transitions; mean-field theory; and the mathematics of variational calculus and tensors. It is written in an informal, conversational style, which is accessible to students from a diverse range of backgrounds. The book begins with a simple “toy model” to demonstrate the physical significance of free energy. It then introduces two standard theories of phase transitions—the Ising model for ferromagnetism and van der Waals theory of gases and liquids—and uses them to illustrate principles of statistical mechanics. From those examples, it moves on to discuss order, disorder, and broken symmetry in many states of matter, and to explain the theoretical methods that are used to model the phenomena. It concludes with a chapter on liquid crystals, which brings together all of these physical and mathematical concepts. The book is accompanied by a set of “interactive figures,” which allow online readers to change parameters and see what happens to a graph, some allow users to rotate a plot or other graphics in 3D, and some do both. These interactive figures help students to develop their intuition for the physical meaning of equations. This book will prepare advanced undergraduate or early graduate students to go into more advanced theoretical studies. It will also equip students going into experimental soft matter science to be fully conversant with the theoretical aspects and have effective collaborations with theorists.
id cern-2062568
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher Springer
record_format invenio
spelling cern-20625682021-04-21T20:03:24Zdoi:10.1007/978-3-319-21054-4http://cds.cern.ch/record/2062568engSelinger, Jonathan VIntroduction to the theory of soft matter: from ideal gases to liquid crystalsOther Fields of PhysicsThis book presents the theory of soft matter to students at the advanced undergraduate or beginning graduate level. It provides a basic introduction to theoretical physics as applied to soft matter, explaining the concepts of symmetry, broken symmetry, and order parameters; phases and phase transitions; mean-field theory; and the mathematics of variational calculus and tensors. It is written in an informal, conversational style, which is accessible to students from a diverse range of backgrounds. The book begins with a simple “toy model” to demonstrate the physical significance of free energy. It then introduces two standard theories of phase transitions—the Ising model for ferromagnetism and van der Waals theory of gases and liquids—and uses them to illustrate principles of statistical mechanics. From those examples, it moves on to discuss order, disorder, and broken symmetry in many states of matter, and to explain the theoretical methods that are used to model the phenomena. It concludes with a chapter on liquid crystals, which brings together all of these physical and mathematical concepts. The book is accompanied by a set of “interactive figures,” which allow online readers to change parameters and see what happens to a graph, some allow users to rotate a plot or other graphics in 3D, and some do both. These interactive figures help students to develop their intuition for the physical meaning of equations. This book will prepare advanced undergraduate or early graduate students to go into more advanced theoretical studies. It will also equip students going into experimental soft matter science to be fully conversant with the theoretical aspects and have effective collaborations with theorists.Springeroai:cds.cern.ch:20625682016
spellingShingle Other Fields of Physics
Selinger, Jonathan V
Introduction to the theory of soft matter: from ideal gases to liquid crystals
title Introduction to the theory of soft matter: from ideal gases to liquid crystals
title_full Introduction to the theory of soft matter: from ideal gases to liquid crystals
title_fullStr Introduction to the theory of soft matter: from ideal gases to liquid crystals
title_full_unstemmed Introduction to the theory of soft matter: from ideal gases to liquid crystals
title_short Introduction to the theory of soft matter: from ideal gases to liquid crystals
title_sort introduction to the theory of soft matter: from ideal gases to liquid crystals
topic Other Fields of Physics
url https://dx.doi.org/10.1007/978-3-319-21054-4
http://cds.cern.ch/record/2062568
work_keys_str_mv AT selingerjonathanv introductiontothetheoryofsoftmatterfromidealgasestoliquidcrystals