Cargando…

The time development of hadronic showers and the T3B experiment

The compact linear collider (CLIC) is a future linear e+e- collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as gamma gamma...

Descripción completa

Detalles Bibliográficos
Autor principal: Soldner, Christian
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:http://cds.cern.ch/record/2069127
_version_ 1780948720182886400
author Soldner, Christian
author_facet Soldner, Christian
author_sort Soldner, Christian
collection CERN
description The compact linear collider (CLIC) is a future linear e+e- collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as gamma gamma -> hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the T3B experiment (short for Tungsten Timing Test Beam) was designed and constructed. It is optimized to measure the time development and the contribution of delayed energy depositions within hadronic cascades. The T3B experiment consists of 15 scintillator cells assembled in a strip. The scintillation light generated within the cells is detected by novel silicon photomultiplier whose signal is read out with fast oscilloscopes providing a sampling rate of 1.25 GHz. This strip was positioned behind two different calorimeter prototypes of the CALICE collaboration which use a tungsten and steel (for comparison) absorber structure. T3B was part of the CALICE test beam campaign 2010/2011 carried out at the PS and SPS at CERN and acquired data on hadronic showers in an energy range of 2-300 GeV. A test beam optimized data acquisition software was developed from scratch. With the development and application of a novel waveform decomposition algorithm, the time of arrival of photons on the light sensor could be determined with sub-nanosecond precision. Embedded in a custom calibration and analysis framework, this allows for a precise study of shower timing on the nanosecond level. The T3B experiment could prove an increased contribution of the delayed shower component in tungsten with respect to steel via a detailed study of the time distribution of energy depositions. In addition, it is observed that the relative importance of late energy depositions increases with radial distance from the shower axis. This increase is substantially more pronounced in tungsten with respect to steel. It could be shown that the standard hadronic shower model QGSP_BERT, used for shower simulations at the LHC as well as for most CLIC physics studies, overestimates the delayed shower evolution systematically, while high precision extensions using precise neutron tracking models can reproduce the shower timing adequately. No significant difference in the delayed shower contribution was observed for different particle energies in a range between 60 GeV and 180 GeV.
id cern-2069127
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
record_format invenio
spelling cern-20691272020-01-31T08:42:42Zhttp://cds.cern.ch/record/2069127engSoldner, ChristianThe time development of hadronic showers and the T3B experimentDetectors and Experimental TechniquesThe compact linear collider (CLIC) is a future linear e+e- collider operated at a center of mass energy of up to 3 TeV and with a collision rate of particle bunches of up to 2 GHz. This poses challenging requirements on the detector system. The accumulation of background events, such as gamma gamma -> hadrons resulting from Beamstrahlung, must be minimized through a precise time stamping capability in all subdetector systems. In the event reconstruction, the energy depositions within the calorimeters will be used to assign events precisely to a small set of consecutive bunch crossings. The finite time evolution of hadronic showers, on the other hand, requires an extended integration time to achieve a satisfactory energy resolution in the calorimeter. The energy resolution is also deteriorated by the leakage of shower particles. Tungsten is foreseen as dense absorber material, but the time evolution of hadron showers within such a calorimeter is not sufficiently explored yet. In the context of this thesis, the T3B experiment (short for Tungsten Timing Test Beam) was designed and constructed. It is optimized to measure the time development and the contribution of delayed energy depositions within hadronic cascades. The T3B experiment consists of 15 scintillator cells assembled in a strip. The scintillation light generated within the cells is detected by novel silicon photomultiplier whose signal is read out with fast oscilloscopes providing a sampling rate of 1.25 GHz. This strip was positioned behind two different calorimeter prototypes of the CALICE collaboration which use a tungsten and steel (for comparison) absorber structure. T3B was part of the CALICE test beam campaign 2010/2011 carried out at the PS and SPS at CERN and acquired data on hadronic showers in an energy range of 2-300 GeV. A test beam optimized data acquisition software was developed from scratch. With the development and application of a novel waveform decomposition algorithm, the time of arrival of photons on the light sensor could be determined with sub-nanosecond precision. Embedded in a custom calibration and analysis framework, this allows for a precise study of shower timing on the nanosecond level. The T3B experiment could prove an increased contribution of the delayed shower component in tungsten with respect to steel via a detailed study of the time distribution of energy depositions. In addition, it is observed that the relative importance of late energy depositions increases with radial distance from the shower axis. This increase is substantially more pronounced in tungsten with respect to steel. It could be shown that the standard hadronic shower model QGSP_BERT, used for shower simulations at the LHC as well as for most CLIC physics studies, overestimates the delayed shower evolution systematically, while high precision extensions using precise neutron tracking models can reproduce the shower timing adequately. No significant difference in the delayed shower contribution was observed for different particle energies in a range between 60 GeV and 180 GeV.CERN-THESIS-2013-388oai:cds.cern.ch:20691272015-11-12T13:57:29Z
spellingShingle Detectors and Experimental Techniques
Soldner, Christian
The time development of hadronic showers and the T3B experiment
title The time development of hadronic showers and the T3B experiment
title_full The time development of hadronic showers and the T3B experiment
title_fullStr The time development of hadronic showers and the T3B experiment
title_full_unstemmed The time development of hadronic showers and the T3B experiment
title_short The time development of hadronic showers and the T3B experiment
title_sort time development of hadronic showers and the t3b experiment
topic Detectors and Experimental Techniques
url http://cds.cern.ch/record/2069127
work_keys_str_mv AT soldnerchristian thetimedevelopmentofhadronicshowersandthet3bexperiment
AT soldnerchristian timedevelopmentofhadronicshowersandthet3bexperiment