Cargando…
Machine learning, computer vision, and probabilistic models in jet physics
<!--HTML-->In this talk we present recent developments in the application of machine learning, computer vision, and probabilistic models to the analysis and interpretation of LHC events. First, we will introduce the concept of jet-images and computer vision techniques for jet tagging. Jet imag...
Autores principales: | KAGAN, Michael Aaron, NACHMAN, Ben |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2069153 |
Ejemplares similares
-
The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
por: Nachman, Ben
Publicado: (2021) -
GroomRL: jet grooming through reinforcement learning
por: Dreyer, Frederic Alexandre
Publicado: (2019) -
An introduction to machine learning with Scikit-Learn
por: Dr. LOUPPE, Gilles
Publicado: (2015) -
The Tracking Machine Learning challenge
por: Rousseau, David
Publicado: (2019) -
Containers for Machine Learning in HEP
por: Feickert, Matthew
Publicado: (2019)