Cargando…

The Measurement of the Number of Light Neutrino Species at LEP

Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the ‘invisible’ width of the Z-boson and the cross-s...

Descripción completa

Detalles Bibliográficos
Autor principal: Mele, Salvatore
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1142/9789814644150_0004
http://cds.cern.ch/record/2103251
Descripción
Sumario:Within weeks of the start of the data taking at the LEP accelerator, the ALEPH, DELPHI, L3 and OPAL experiments were able to confirm the existence of just three light neutrino species. This measurement relies on the Standard Model relation between the ‘invisible’ width of the Z-boson and the cross-sections for Z-boson production and subsequent decay into hadrons. The full data sample collected by the experiments at and around the Z-boson resonance allows a high-precision measurement of the number of light neutrino species as 2.9840 ± 0.0082. The uncertainty is mostly due to the understanding of the low-angle Bhabha scattering process used to determine the experimental luminosity. This result is independently confirmed by the elegant direct observation of the process, through the detection of an initial-state-radiation photon in otherwise empty detectors. This result confirms expectations from the existence of three charged leptons species, and contributes to the fields of astrophysics and cosmology. Alongside other LEP achievements, the precision of this result is a testament to the global cooperation underpinning CERN's fourth decade. LEP saw the onset of large-scale collaboration across experiments totaling over 2000 scientists, together with a strong partnership within the wider high-energy physics community: from accelerator operations to the understanding of theoretical processes.