Cargando…
Cosmology with orthogonal nilpotent superfields
We study the application of a supersymmetric model with two constrained supermultiplets to inflationary cosmology. The first superfield S is a stabilizer chiral superfield satisfying a nilpotency condition of degree 2, S^2=0. The second superfield Phi is the inflaton chiral superfield, which can be...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.93.043516 http://cds.cern.ch/record/2110382 |
Sumario: | We study the application of a supersymmetric model with two constrained supermultiplets to inflationary cosmology. The first superfield S is a stabilizer chiral superfield satisfying a nilpotency condition of degree 2, S^2=0. The second superfield Phi is the inflaton chiral superfield, which can be combined into a real superfield B=(Phi-Phi*)/2i. The real superfield B is orthogonal to S, S B=0, and satisfies a nilpotency condition of degree 3, B^3=0. We show that these constraints remove from the spectrum the complex scalar sgoldstino, the real scalar inflaton partner (i.e. the "sinflaton"), and the fermionic inflatino. The corresponding supergravity model with de Sitter vacua describes a graviton, a massive gravitino, and one real scalar inflaton, with both the goldstino and inflatino being absent in unitary gauge. We also discuss relaxed superfield constraints where S^2=0 and S Phi* is chiral, which removes the sgoldstino and inflatino, but leaves the sinflaton in the spectrum. The cosmological model building in both of these inflatino-less models offers some advantages over existing constructions. |
---|