Cargando…

The convergence problem for dissipative autonomous systems: classical methods and recent advances

The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing...

Descripción completa

Detalles Bibliográficos
Autores principales: Haraux, Alain, Jendoubi, Mohamed Ali
Lenguaje:eng
Publicado: Springer 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-23407-6
http://cds.cern.ch/record/2112869
_version_ 1780948971356684288
author Haraux, Alain
Jendoubi, Mohamed Ali
author_facet Haraux, Alain
Jendoubi, Mohamed Ali
author_sort Haraux, Alain
collection CERN
description The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
id cern-2112869
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher Springer
record_format invenio
spelling cern-21128692021-04-21T20:00:47Zdoi:10.1007/978-3-319-23407-6http://cds.cern.ch/record/2112869engHaraux, AlainJendoubi, Mohamed AliThe convergence problem for dissipative autonomous systems: classical methods and recent advancesMathematical Physics and MathematicsThe book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.Springeroai:cds.cern.ch:21128692015
spellingShingle Mathematical Physics and Mathematics
Haraux, Alain
Jendoubi, Mohamed Ali
The convergence problem for dissipative autonomous systems: classical methods and recent advances
title The convergence problem for dissipative autonomous systems: classical methods and recent advances
title_full The convergence problem for dissipative autonomous systems: classical methods and recent advances
title_fullStr The convergence problem for dissipative autonomous systems: classical methods and recent advances
title_full_unstemmed The convergence problem for dissipative autonomous systems: classical methods and recent advances
title_short The convergence problem for dissipative autonomous systems: classical methods and recent advances
title_sort convergence problem for dissipative autonomous systems: classical methods and recent advances
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-23407-6
http://cds.cern.ch/record/2112869
work_keys_str_mv AT harauxalain theconvergenceproblemfordissipativeautonomoussystemsclassicalmethodsandrecentadvances
AT jendoubimohamedali theconvergenceproblemfordissipativeautonomoussystemsclassicalmethodsandrecentadvances
AT harauxalain convergenceproblemfordissipativeautonomoussystemsclassicalmethodsandrecentadvances
AT jendoubimohamedali convergenceproblemfordissipativeautonomoussystemsclassicalmethodsandrecentadvances