Cargando…

Understanding the epoch of cosmic reionization: challenges and progress

The aim of this volume is to summarize the current status and future outlook of the reionization field on both the theoretical and observational fronts. It brings together leading experts in many sub-disciplines, highlighting the measurements that are likely to drive the growing understanding of rei...

Descripción completa

Detalles Bibliográficos
Autor principal: Mesinger, Andrei
Lenguaje:eng
Publicado: Springer 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-21957-8
http://cds.cern.ch/record/2113015
_version_ 1780949000821669888
author Mesinger, Andrei
author_facet Mesinger, Andrei
author_sort Mesinger, Andrei
collection CERN
description The aim of this volume is to summarize the current status and future outlook of the reionization field on both the theoretical and observational fronts. It brings together leading experts in many sub-disciplines, highlighting the measurements that are likely to drive the growing understanding of reionization and the cosmic dawn, and lays out a roadmap to interpreting the wealth of upcoming observations. The birth of the first stars and galaxies, and their impact on the diffuse matter perme­ating the early Universe, is one of the final frontiers in cosmology. Recently, measure­ments of the fluctuations in the cosmic microwave background (CMB), sourced only a few hundred thousand years after the Big Bang, provided robust insight into the overall physical content of our Universe. On the other end of the timeline, groundbreaking telescopes provide us a picture of the complexities of the galaxy-rich universe in which we now live. However, we know almost nothing about the astrophysics of the first billion years. During this relatively brief epoch, a tiny fraction of matter condensed inside the first galaxies, forming the first stars. This culminated in the final major phase change of our universe, cosmological reionization, which lifted the cosmic fog and allowed visible light to spread throughout space.   This mysterious ep­och of reionization corresponds to the transition between the relative simplicity of the early universe and the complexity of the present-day one. It is fundamental in understanding cosmic origins, and its impact on structure formation resonates even to this day. Until recently, there was very little observational insight into the epoch of reionization. Subsequent observational and theoretical advancements have begun to paint a picture of a complicated, extended, inhomogeneous process. At its core, the process of cosmological reionization involves understanding how stars and clumps of gas impact each other and eventually the entire Universe. The challenges associated with such an enormous range of relevant scales, coupled with our relatively poor understanding of the dominant astrophysics, have thus far impeded efforts to form a solid theoretical framework. As such, the interpretation of the reionization data currently available remains controversial even as the wealth of data is increasing thanks to more sophisticated analytical and numerical approaches. Investigations have become subtler, discarding the “one size fits all” approach in favor of focused studies with specialized tools, placing astrophysics on the cusp of a dramatic increase in knowledge. What is the best use of limited observational resources? How to develop theoretical tools tailored for each observation? Ultimately, what will be learned about the epoch of reionization and the Universe’s galactic ancestors?
id cern-2113015
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher Springer
record_format invenio
spelling cern-21130152021-04-21T20:00:07Zdoi:10.1007/978-3-319-21957-8http://cds.cern.ch/record/2113015engMesinger, AndreiUnderstanding the epoch of cosmic reionization: challenges and progressAstrophysics and AstronomyThe aim of this volume is to summarize the current status and future outlook of the reionization field on both the theoretical and observational fronts. It brings together leading experts in many sub-disciplines, highlighting the measurements that are likely to drive the growing understanding of reionization and the cosmic dawn, and lays out a roadmap to interpreting the wealth of upcoming observations. The birth of the first stars and galaxies, and their impact on the diffuse matter perme­ating the early Universe, is one of the final frontiers in cosmology. Recently, measure­ments of the fluctuations in the cosmic microwave background (CMB), sourced only a few hundred thousand years after the Big Bang, provided robust insight into the overall physical content of our Universe. On the other end of the timeline, groundbreaking telescopes provide us a picture of the complexities of the galaxy-rich universe in which we now live. However, we know almost nothing about the astrophysics of the first billion years. During this relatively brief epoch, a tiny fraction of matter condensed inside the first galaxies, forming the first stars. This culminated in the final major phase change of our universe, cosmological reionization, which lifted the cosmic fog and allowed visible light to spread throughout space.   This mysterious ep­och of reionization corresponds to the transition between the relative simplicity of the early universe and the complexity of the present-day one. It is fundamental in understanding cosmic origins, and its impact on structure formation resonates even to this day. Until recently, there was very little observational insight into the epoch of reionization. Subsequent observational and theoretical advancements have begun to paint a picture of a complicated, extended, inhomogeneous process. At its core, the process of cosmological reionization involves understanding how stars and clumps of gas impact each other and eventually the entire Universe. The challenges associated with such an enormous range of relevant scales, coupled with our relatively poor understanding of the dominant astrophysics, have thus far impeded efforts to form a solid theoretical framework. As such, the interpretation of the reionization data currently available remains controversial even as the wealth of data is increasing thanks to more sophisticated analytical and numerical approaches. Investigations have become subtler, discarding the “one size fits all” approach in favor of focused studies with specialized tools, placing astrophysics on the cusp of a dramatic increase in knowledge. What is the best use of limited observational resources? How to develop theoretical tools tailored for each observation? Ultimately, what will be learned about the epoch of reionization and the Universe’s galactic ancestors?Springeroai:cds.cern.ch:21130152016
spellingShingle Astrophysics and Astronomy
Mesinger, Andrei
Understanding the epoch of cosmic reionization: challenges and progress
title Understanding the epoch of cosmic reionization: challenges and progress
title_full Understanding the epoch of cosmic reionization: challenges and progress
title_fullStr Understanding the epoch of cosmic reionization: challenges and progress
title_full_unstemmed Understanding the epoch of cosmic reionization: challenges and progress
title_short Understanding the epoch of cosmic reionization: challenges and progress
title_sort understanding the epoch of cosmic reionization: challenges and progress
topic Astrophysics and Astronomy
url https://dx.doi.org/10.1007/978-3-319-21957-8
http://cds.cern.ch/record/2113015
work_keys_str_mv AT mesingerandrei understandingtheepochofcosmicreionizationchallengesandprogress