Cargando…

Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"

On the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the un...

Descripción completa

Detalles Bibliográficos
Autor principal: Mavromatos, Nick E.
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1051/epjconf/201612602020
http://cds.cern.ch/record/2117316
_version_ 1780949230914895872
author Mavromatos, Nick E.
author_facet Mavromatos, Nick E.
author_sort Mavromatos, Nick E.
collection CERN
description On the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the universe from an inflationary era after the big-bang till now, and (iii) local supersymmetry in the gravitational sector (supergravity) with a broken spectrum at early eras, by making use of the concept of the "running vacuum" in the context of a simple toy model of four-dimensional N=1 supergravity. The model is characterised by dynamically broken local supersymmetry, induced by the formation of gravitino condensates in the early universe. As I will argue, there is a Starobinsky-type inflationary era characterising the broken supersymmetry phase in this model, which is compatible with the current cosmological data, provided a given constraint is satisfied among some tree-level parameters of the model and the renormalised cosmological constant of the de Sitter background used in the analysis. Applying the "running vacuum" concept, then, to the effective field theory at the exit of inflation, makes a smooth connection (in cosmic time) with the radiation dominance epoch and subsequently with the current era of the Universe, characterised by a small (but dominant) cosmological-constant contribution to the cosmic energy density. In this approach, the smallness of the cosmological constant today is attributed to the failure (due to quantum gravity non-perturbative effects) of the aforementioned constraint.
id cern-2117316
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
record_format invenio
spelling cern-21173162023-03-14T19:34:39Zdoi:10.1051/epjconf/201612602020http://cds.cern.ch/record/2117316engMavromatos, Nick E.Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"Particle Physics - TheoryOn the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the universe from an inflationary era after the big-bang till now, and (iii) local supersymmetry in the gravitational sector (supergravity) with a broken spectrum at early eras, by making use of the concept of the "running vacuum" in the context of a simple toy model of four-dimensional N=1 supergravity. The model is characterised by dynamically broken local supersymmetry, induced by the formation of gravitino condensates in the early universe. As I will argue, there is a Starobinsky-type inflationary era characterising the broken supersymmetry phase in this model, which is compatible with the current cosmological data, provided a given constraint is satisfied among some tree-level parameters of the model and the renormalised cosmological constant of the de Sitter background used in the analysis. Applying the "running vacuum" concept, then, to the effective field theory at the exit of inflation, makes a smooth connection (in cosmic time) with the radiation dominance epoch and subsequently with the current era of the Universe, characterised by a small (but dominant) cosmological-constant contribution to the cosmic energy density. In this approach, the smallness of the cosmological constant today is attributed to the failure (due to quantum gravity non-perturbative effects) of the aforementioned constraint.On the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the universe from an inflationary era after the bigbang till now, and (iii) local supersymmetry in the gravitational sector (supergravity) with a broken spectrum at early eras, by making use of the concept of the 'running vacuum' in the context of a simple toy model of four-dimensional N = 1 supergravity. The model is characterised by dynamically broken local supersymmetry, induced by the formation of gravitino condensates in the early universe. As I will argue, there is a Starobinsky-type inflationary era characterising the broken supersymmetry phase in this model, which is compatible with the current cosmological data, provided a given constraint is satisfied among some tree-level parameters of the model and the renormalised cosmological constant of the de Sitter background used in the analysis. Applying the 'running vacuum' concept, then, to the effective field theory at the exit of inflation, makes a smooth connection (in cosmic time) with the radiation dominance epoch and subsequently with the current era of the Universe, characterised by a small (but dominant) cosmological-constant contribution to the cosmic energy density. In this approach, the smallness of the cosmological constant today is attributed to the failure (due to quantum gravity non-perturbative effects) of the aforementioned constraint.On the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the universe from an inflationary era after the bigbang till now, and (iii) local supersymmetry in the gravitational sector (supergravity) with a broken spectrum at early eras, by making use of the concept of the “running vacuum” in the context of a simple toy model of four-dimensional N = 1 supergravity. The model is characterised by dynamically broken local supersymmetry, induced by the formation of gravitino condensates in the early universe. As I will argue, there is a Starobinsky-type inflationary era characterising the broken supersymmetry phase in this model, which is compatible with the current cosmological data, provided a given constraint is satisfied among some tree-level parameters of the model and the renormalised cosmological constant of the de Sitter background used in the analysis. Applying the “running vacuum” concept, then, to the effective field theory at the exit of inflation, makes a smooth connection (in cosmic time) with the radiation dominance epoch and subsequently with the current era of the Universe, characterised by a small (but dominant) cosmological-constant contribution to the cosmic energy density. In this approach, the smallness of the cosmological constant today is attributed to the failure (due to quantum gravity non-perturbative effects) of the aforementioned constraint.On the occasion of a century from the proposal of General relativity by Einstein, I attempt to tackle some open issues in modern cosmology, via a toy but non-trivial model. Specifically, I would like to link together: (i) the smallness of the cosmological constant today, (ii) the evolution of the universe from an inflationary era after the big-bang till now, and (iii) local supersymmetry in the gravitational sector (supergravity) with a broken spectrum at early eras, by making use of the concept of the "running vacuum" in the context of a simple toy model of four-dimensional N=1 supergravity. The model is characterised by dynamically broken local supersymmetry, induced by the formation of gravitino condensates in the early universe. As I will argue, there is a Starobinsky-type inflationary era characterising the broken supersymmetry phase in this model, which is compatible with the current cosmological data, provided a given constraint is satisfied among some tree-level parameters of the model and the renormalised cosmological constant of the de Sitter background used in the analysis. Applying the "running vacuum" concept, then, to the effective field theory at the exit of inflation, makes a smooth connection (in cosmic time) with the radiation dominance epoch and subsequently with the current era of the Universe, characterised by a small (but dominant) cosmological-constant contribution to the cosmic energy density. In this approach, the smallness of the cosmological constant today is attributed to the failure (due to quantum gravity non-perturbative effects) of the aforementioned constraint.arXiv:1512.06250LCTS-2015-47KCL-PH-TH-2015-57LCTS-2015-47KCL-PH-TH-2015-57oai:cds.cern.ch:21173162015-12-19
spellingShingle Particle Physics - Theory
Mavromatos, Nick E.
Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"
title Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"
title_full Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"
title_fullStr Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"
title_full_unstemmed Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"
title_short Supersymmetry, Cosmological Constant and Inflation: Towards a fundamental cosmic picture via "running vacuum"
title_sort supersymmetry, cosmological constant and inflation: towards a fundamental cosmic picture via "running vacuum"
topic Particle Physics - Theory
url https://dx.doi.org/10.1051/epjconf/201612602020
http://cds.cern.ch/record/2117316
work_keys_str_mv AT mavromatosnicke supersymmetrycosmologicalconstantandinflationtowardsafundamentalcosmicpictureviarunningvacuum