Cargando…
Fast Timing for High-Rate Environments with Micromegas
The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustai...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201817402002 http://cds.cern.ch/record/2119048 |
_version_ | 1780949258063577088 |
---|---|
author | Papaevangelou, Thomas Desforge, Daniel Ferrer-Ribas, Esther Giomataris, Ioannis Godinot, Cyprien Gonzalez Diaz, Diego Gustavsson, Thomas Kebbiri, Mariam Oliveri, Eraldo Resnati, Filippo Ropelewski, Leszek Tsiledakis, Georgios Veenhof, Rob White, Sebastian |
author_facet | Papaevangelou, Thomas Desforge, Daniel Ferrer-Ribas, Esther Giomataris, Ioannis Godinot, Cyprien Gonzalez Diaz, Diego Gustavsson, Thomas Kebbiri, Mariam Oliveri, Eraldo Resnati, Filippo Ropelewski, Leszek Tsiledakis, Georgios Veenhof, Rob White, Sebastian |
author_sort | Papaevangelou, Thomas |
collection | CERN |
description | The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate aMicromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkovradiator front window, which produces sufficient UV photons to convert the ∼100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ∼50 primary photoelectrons, using a bulk Micromegas readout. |
id | cern-2119048 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
record_format | invenio |
spelling | cern-21190482022-03-16T03:10:17Zdoi:10.1051/epjconf/201817402002http://cds.cern.ch/record/2119048engPapaevangelou, ThomasDesforge, DanielFerrer-Ribas, EstherGiomataris, IoannisGodinot, CyprienGonzalez Diaz, DiegoGustavsson, ThomasKebbiri, MariamOliveri, EraldoResnati, FilippoRopelewski, LeszekTsiledakis, GeorgiosVeenhof, RobWhite, SebastianFast Timing for High-Rate Environments with Micromegashep-exParticle Physics - Experimentphysics.ins-detDetectors and Experimental TechniquesThe current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate aMicromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkovradiator front window, which produces sufficient UV photons to convert the ∼100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ∼50 primary photoelectrons, using a bulk Micromegas readout.The current state of the art in fast timing resolution for existing experiments is of the order of 100 ps on the time of arrival of both charged particles and electromagnetic showers. Current R&D on charged particle timing is approaching the level of 10 ps but is not primarily directed at sustained performance at high rates and under high radiation (as would be needed for HL-LHC pileup mitigation). We demonstrate a Micromegas based solution to reach this level of performance. The Micromegas acts as a photomultiplier coupled to a Cerenkov-radiator front window, which produces sufficient UV photons to convert the ~100 ps single-photoelectron jitter into a timing response of the order of 10-20 ps per incident charged particle. A prototype has been built in order to demonstrate this performance. The first laboratory tests with a pico-second laser have shown a time resolution of the order of 27 ps for ~50 primary photoelectrons, using a bulk Micromegas readout.arXiv:1601.00123oai:cds.cern.ch:21190482016-01-01 |
spellingShingle | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques Papaevangelou, Thomas Desforge, Daniel Ferrer-Ribas, Esther Giomataris, Ioannis Godinot, Cyprien Gonzalez Diaz, Diego Gustavsson, Thomas Kebbiri, Mariam Oliveri, Eraldo Resnati, Filippo Ropelewski, Leszek Tsiledakis, Georgios Veenhof, Rob White, Sebastian Fast Timing for High-Rate Environments with Micromegas |
title | Fast Timing for High-Rate Environments with Micromegas |
title_full | Fast Timing for High-Rate Environments with Micromegas |
title_fullStr | Fast Timing for High-Rate Environments with Micromegas |
title_full_unstemmed | Fast Timing for High-Rate Environments with Micromegas |
title_short | Fast Timing for High-Rate Environments with Micromegas |
title_sort | fast timing for high-rate environments with micromegas |
topic | hep-ex Particle Physics - Experiment physics.ins-det Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1051/epjconf/201817402002 http://cds.cern.ch/record/2119048 |
work_keys_str_mv | AT papaevangelouthomas fasttimingforhighrateenvironmentswithmicromegas AT desforgedaniel fasttimingforhighrateenvironmentswithmicromegas AT ferrerribasesther fasttimingforhighrateenvironmentswithmicromegas AT giomatarisioannis fasttimingforhighrateenvironmentswithmicromegas AT godinotcyprien fasttimingforhighrateenvironmentswithmicromegas AT gonzalezdiazdiego fasttimingforhighrateenvironmentswithmicromegas AT gustavssonthomas fasttimingforhighrateenvironmentswithmicromegas AT kebbirimariam fasttimingforhighrateenvironmentswithmicromegas AT oliverieraldo fasttimingforhighrateenvironmentswithmicromegas AT resnatifilippo fasttimingforhighrateenvironmentswithmicromegas AT ropelewskileszek fasttimingforhighrateenvironmentswithmicromegas AT tsiledakisgeorgios fasttimingforhighrateenvironmentswithmicromegas AT veenhofrob fasttimingforhighrateenvironmentswithmicromegas AT whitesebastian fasttimingforhighrateenvironmentswithmicromegas |