Cargando…

Behavioral program synthesis with genetic programming

Genetic programming (GP) is a popular heuristic methodology of program synthesis with origins in evolutionary computation. In this generate-and-test approach, candidate programs are iteratively produced and evaluated. The latter involves running programs on tests, where they exhibit complex behavior...

Descripción completa

Detalles Bibliográficos
Autor principal: Krawiec, Krzysztof
Lenguaje:eng
Publicado: Springer 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-27565-9
http://cds.cern.ch/record/2120238
_version_ 1780949308509519872
author Krawiec, Krzysztof
author_facet Krawiec, Krzysztof
author_sort Krawiec, Krzysztof
collection CERN
description Genetic programming (GP) is a popular heuristic methodology of program synthesis with origins in evolutionary computation. In this generate-and-test approach, candidate programs are iteratively produced and evaluated. The latter involves running programs on tests, where they exhibit complex behaviors reflected in changes of variables, registers, or memory. That behavior not only ultimately determines program output, but may also reveal its `hidden qualities' and important characteristics of the considered synthesis problem. However, the conventional GP is oblivious to most of that information and usually cares only about the number of tests passed by a program. This `evaluation bottleneck' leaves search algorithm underinformed about the actual and potential qualities of candidate programs. This book proposes behavioral program synthesis, a conceptual framework that opens GP to detailed information on program behavior in order to make program synthesis more efficient. Several existing and novel mechanisms subscribing to that perspective to varying extent are presented and discussed, including implicit fitness sharing, semantic GP, co-solvability, trace convergence analysis, pattern-guided program synthesis, and behavioral archives of subprograms. The framework involves several concepts that are new to GP, including execution record, combined trace, and search driver, a generalization of objective function. Empirical evidence gathered in several presented experiments clearly demonstrates the usefulness of behavioral approach. The book contains also an extensive discussion of implications of the behavioral perspective for program synthesis and beyond. .
id cern-2120238
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher Springer
record_format invenio
spelling cern-21202382021-04-21T19:55:53Zdoi:10.1007/978-3-319-27565-9http://cds.cern.ch/record/2120238engKrawiec, KrzysztofBehavioral program synthesis with genetic programmingEngineeringGenetic programming (GP) is a popular heuristic methodology of program synthesis with origins in evolutionary computation. In this generate-and-test approach, candidate programs are iteratively produced and evaluated. The latter involves running programs on tests, where they exhibit complex behaviors reflected in changes of variables, registers, or memory. That behavior not only ultimately determines program output, but may also reveal its `hidden qualities' and important characteristics of the considered synthesis problem. However, the conventional GP is oblivious to most of that information and usually cares only about the number of tests passed by a program. This `evaluation bottleneck' leaves search algorithm underinformed about the actual and potential qualities of candidate programs. This book proposes behavioral program synthesis, a conceptual framework that opens GP to detailed information on program behavior in order to make program synthesis more efficient. Several existing and novel mechanisms subscribing to that perspective to varying extent are presented and discussed, including implicit fitness sharing, semantic GP, co-solvability, trace convergence analysis, pattern-guided program synthesis, and behavioral archives of subprograms. The framework involves several concepts that are new to GP, including execution record, combined trace, and search driver, a generalization of objective function. Empirical evidence gathered in several presented experiments clearly demonstrates the usefulness of behavioral approach. The book contains also an extensive discussion of implications of the behavioral perspective for program synthesis and beyond. .Springeroai:cds.cern.ch:21202382016
spellingShingle Engineering
Krawiec, Krzysztof
Behavioral program synthesis with genetic programming
title Behavioral program synthesis with genetic programming
title_full Behavioral program synthesis with genetic programming
title_fullStr Behavioral program synthesis with genetic programming
title_full_unstemmed Behavioral program synthesis with genetic programming
title_short Behavioral program synthesis with genetic programming
title_sort behavioral program synthesis with genetic programming
topic Engineering
url https://dx.doi.org/10.1007/978-3-319-27565-9
http://cds.cern.ch/record/2120238
work_keys_str_mv AT krawieckrzysztof behavioralprogramsynthesiswithgeneticprogramming