Cargando…

Robust methods for data reduction

Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical corr...

Descripción completa

Detalles Bibliográficos
Autores principales: Farcomeni, Alessio, Greco, Luca
Lenguaje:eng
Publicado: CRC Press 2015
Materias:
Acceso en línea:http://cds.cern.ch/record/2121496
_version_ 1780949375140233216
author Farcomeni, Alessio
Greco, Luca
author_facet Farcomeni, Alessio
Greco, Luca
author_sort Farcomeni, Alessio
collection CERN
description Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis.The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analy
id cern-2121496
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
publisher CRC Press
record_format invenio
spelling cern-21214962021-04-21T19:55:11Zhttp://cds.cern.ch/record/2121496engFarcomeni, AlessioGreco, LucaRobust methods for data reductionMathematical Physics and MathematicsRobust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis.The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analyCRC Pressoai:cds.cern.ch:21214962015
spellingShingle Mathematical Physics and Mathematics
Farcomeni, Alessio
Greco, Luca
Robust methods for data reduction
title Robust methods for data reduction
title_full Robust methods for data reduction
title_fullStr Robust methods for data reduction
title_full_unstemmed Robust methods for data reduction
title_short Robust methods for data reduction
title_sort robust methods for data reduction
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2121496
work_keys_str_mv AT farcomenialessio robustmethodsfordatareduction
AT grecoluca robustmethodsfordatareduction