Cargando…
Future Collider Signatures of the Possible 750 GeV State
If the recent indications of a possible state $\Phi$ with mass $\sim 750$ GeV decaying into two photons reported by ATLAS and CMS in LHC collisions at 13 TeV were to become confirmed, the prospects for future collider physics at the LHC and beyond would be affected radically, as we explore in this p...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP03(2016)205 http://cds.cern.ch/record/2124349 |
Sumario: | If the recent indications of a possible state $\Phi$ with mass $\sim 750$ GeV decaying into two photons reported by ATLAS and CMS in LHC collisions at 13 TeV were to become confirmed, the prospects for future collider physics at the LHC and beyond would be affected radically, as we explore in this paper. Even minimal scenarios for the $\Phi$ resonance and its $\gamma \gamma$ decays require additional particles with masses $\gtrsim \frac12 m_\Phi$. We consider here two benchmark scenarios that exemplify the range of possibilities: one in which $\Phi$ is a singlet scalar or pseudoscalar boson whose production and $\gamma \gamma$ decays are due to loops of coloured and charged fermions, and another benchmark scenario in which $\Phi$ is a superposition of (nearly) degenerate CP-even and CP-odd Higgs bosons in a (possibly supersymmetric) two-Higgs doublet model also with additional fermions to account for the $\gamma \gamma$ decay rate. We explore the implications of these benchmark scenarios for the production of $\Phi$ and its new partners at colliders in future runs of the LHC and beyond, at higher-energy $pp$ colliders and at $e^+ e^-$ and $\gamma \gamma$ colliders, with emphasis on the bosonic partners expected in the doublet scenario and the fermionic partners expected in both scenarios. |
---|