Cargando…
Probabilistic forecasting and Bayesian data assimilation
In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical exam...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
Cambridge University Press
2015
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/2126973 |
_version_ | 1780949668446863360 |
---|---|
author | Reich, Sebastian Cotter, Colin |
author_facet | Reich, Sebastian Cotter, Colin |
author_sort | Reich, Sebastian |
collection | CERN |
description | In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas. |
id | cern-2126973 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2015 |
publisher | Cambridge University Press |
record_format | invenio |
spelling | cern-21269732021-04-21T19:49:26Zhttp://cds.cern.ch/record/2126973engReich, SebastianCotter, ColinProbabilistic forecasting and Bayesian data assimilationMathematical Physics and MathematicsIn this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.Cambridge University Pressoai:cds.cern.ch:21269732015 |
spellingShingle | Mathematical Physics and Mathematics Reich, Sebastian Cotter, Colin Probabilistic forecasting and Bayesian data assimilation |
title | Probabilistic forecasting and Bayesian data assimilation |
title_full | Probabilistic forecasting and Bayesian data assimilation |
title_fullStr | Probabilistic forecasting and Bayesian data assimilation |
title_full_unstemmed | Probabilistic forecasting and Bayesian data assimilation |
title_short | Probabilistic forecasting and Bayesian data assimilation |
title_sort | probabilistic forecasting and bayesian data assimilation |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/2126973 |
work_keys_str_mv | AT reichsebastian probabilisticforecastingandbayesiandataassimilation AT cottercolin probabilisticforecastingandbayesiandataassimilation |