Cargando…

High precision determination of the gluon fusion Higgs boson cross-section at the LHC

We present the most precise value for the Higgs boson cross-section in the gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion through N$^3$LO in QCD, in an effective theory where the top-quark is assumed to be infinitely heavy, while all other Standard Model qua...

Descripción completa

Detalles Bibliográficos
Autores principales: Anastasiou, Charalampos, Duhr, Claude, Dulat, Falko, Furlan, Elisabetta, Gehrmann, Thomas, Herzog, Franz, Lazopoulos, Achilleas, Mistlberger, Bernhard
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP05(2016)058
http://cds.cern.ch/record/2128781
Descripción
Sumario:We present the most precise value for the Higgs boson cross-section in the gluon-fusion production mode at the LHC. Our result is based on a perturbative expansion through N$^3$LO in QCD, in an effective theory where the top-quark is assumed to be infinitely heavy, while all other Standard Model quarks are massless. We combine this result with QCD corrections to the cross-section where all finite quark-mass effects are included exactly through NLO. In addition, electroweak corrections and the first corrections in the inverse mass of the top-quark are incorporated at three loops. We also investigate the effects of threshold resummation, both in the traditional QCD framework and following a SCET approach, which resums a class of $\pi^2$ contributions to all orders. We assess the uncertainty of the cross-section from missing higher-order corrections due to both perturbative QCD effects beyond N$^3$LO and unknown mixed QCD-electroweak effects. In addition, we determine the sensitivity of the cross-section to the choice of parton distribution function (PDF) sets and to the parametric uncertainty in the strong coupling constant and quark masses. For a Higgs mass of $m_H = 125~{\rm GeV}$ and an LHC center-of-mass energy of $13~{\rm TeV}$, our best prediction for the gluon fusion cross-section is \[ \sigma = 48.58\,{\rm pb} {}^{+2.22\, {\rm pb}\, (+4.56\%)}_{-3.27\, {\rm pb}\, (-6.72\%)} \mbox{ (theory)} \pm 1.56 \,{\rm pb}\, (3.20\%) \mbox{ (PDF+$\alpha_s$)} \]