Cargando…

Upgrading the ATLAS fast calorimeter simulation

Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these case...

Descripción completa

Detalles Bibliográficos
Autor principal: Hubacek, Zdenek
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/762/1/012054
http://cds.cern.ch/record/2134959
_version_ 1780949928581791744
author Hubacek, Zdenek
author_facet Hubacek, Zdenek
author_sort Hubacek, Zdenek
collection CERN
description Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATLAS simulation infrastructure.
id cern-2134959
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
record_format invenio
spelling cern-21349592019-09-30T06:29:59Zdoi:10.1088/1742-6596/762/1/012054http://cds.cern.ch/record/2134959engHubacek, ZdenekUpgrading the ATLAS fast calorimeter simulationDetectors and Experimental TechniquesMany physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. An improved parametrization is being developed, to eventually address shortcomings of the original version. It makes use of statistical techniques such as principal component analysis, and a neural network parametrization to optimise the amount of information to store in the ATLAS simulation infrastructure.ATL-SOFT-PROC-2016-002oai:cds.cern.ch:21349592016-02-28
spellingShingle Detectors and Experimental Techniques
Hubacek, Zdenek
Upgrading the ATLAS fast calorimeter simulation
title Upgrading the ATLAS fast calorimeter simulation
title_full Upgrading the ATLAS fast calorimeter simulation
title_fullStr Upgrading the ATLAS fast calorimeter simulation
title_full_unstemmed Upgrading the ATLAS fast calorimeter simulation
title_short Upgrading the ATLAS fast calorimeter simulation
title_sort upgrading the atlas fast calorimeter simulation
topic Detectors and Experimental Techniques
url https://dx.doi.org/10.1088/1742-6596/762/1/012054
http://cds.cern.ch/record/2134959
work_keys_str_mv AT hubacekzdenek upgradingtheatlasfastcalorimetersimulation