Cargando…
$\chi^{\vphantom\dagger}_{c0}(3915)$ As the Lightest $c\bar c s \bar s$ State
The state $\chi^{\vphantom\dagger}_{c0}(3915)$ has recently been demoted by the Particle Data Group from its previous status as the conventional $c\bar c$ $2 {}^3P_0$ state, largely due to the absence of expected $D\bar D$ decays. We propose that $\chi^{\vphantom\dagger}_{c0}(3915)$ is actually the...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.93.094024 http://cds.cern.ch/record/2135044 |
Sumario: | The state $\chi^{\vphantom\dagger}_{c0}(3915)$ has recently been demoted by the Particle Data Group from its previous status as the conventional $c\bar c$ $2 {}^3P_0$ state, largely due to the absence of expected $D\bar D$ decays. We propose that $\chi^{\vphantom\dagger}_{c0}(3915)$ is actually the lightest $c\bar c s \bar s$ state, and calculate the spectrum of such states using the diquark model, identifying many of the observed charmoniumlike states that lack open-charm decay modes as $c\bar c s \bar s$. Among other results, we argue that $Y(4140)$ is a $J^{PC} = 1^{++}$ $c\bar c s \bar s$ state that has been not been seen in two-photon fusion largely as a consequence of the Landau-Yang theorem. |
---|