Cargando…

Photon Mass Limits from Fast Radio Bursts

The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\gamma$. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Bonetti, Luca, Ellis, John, Mavromatos, Nikolaos E., Sakharov, Alexander S., Sarkisyan-Grinbaum, Edward K.G., Spallicci, Alessandro D.A.M.
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.physletb.2016.04.035
http://cds.cern.ch/record/2135456
Descripción
Sumario:The frequency-dependent time delays in fast radio bursts (FRBs) can be used to constrain the photon mass, if the FRB redshifts are known, but the similarity between the frequency dependences of dispersion due to plasma effects and a photon mass complicates the derivation of a limit on $m_\gamma$. The redshift of FRB 150418 has been measured to $\sim 2$% and its dispersion measure (DM) is known to $\sim 0.1$%, but the strength of the constraint on $m_\gamma$ is limited by uncertainties in the modelling of the host galaxy and the Milky Way, as well as possible inhomogeneities in the intergalactic medium (IGM). Allowing for these uncertainties, the recent data on FRB 150418 indicate that $m_\gamma \lesssim 1.7 \times 10^{-14}$ eV c$^{-2}$ ($4.6 \times 10^{-50}$ kg). In the future, the different redshift dependences of the plasma and photon mass contributions to DM can be used to improve the sensitivity to $m_\gamma$ if more FRB redshifts are measured. For a fixed fractional uncertainty in the extra-galactic contribution to the DM of an FRB, one with a lower redshift would provide greater sensitivity to $m_\gamma$.