Cargando…
Nonsmooth mechanics: models, dynamics and control
Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. T...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-28664-8 http://cds.cern.ch/record/2137835 |
Sumario: | Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—including developments in: the existence and uniqueness of solutions; impact models; extension of the Lagrange–Dirichlet theorem and trajectory tracking; and well-posedness of contact complementarity problems with and without friction. With its improved bibliography of over 1,300 references and wide-ranging coverage, Nonsmooth Mechanics (third edition) is sure to be an invaluable resource for researchers and postgraduates studying the control of mechanical systems, robotics, granular matter and relevant fields of applied mathematics. The book’s two best features, in my view are its detailed survey of the literature… and its detailed presentation of many examples illustrating both the techniques and their limitations… For readers interested in the field, this book will serve as an excellent introductory survey. Andrew Lewis in Automatica It is written with clarity, contains the latest research results in the area of impact problems for rigid bodies and is recommended for both applied mathematicians and engineers. Panagiotis D. Panagiotopoulos in Mathematical Reviews The presentation is excellent in combining rigorous mathematics with a great number of examples… allowing the reader to understand the basic concepts. Hans Troger in Mathematical Abstracts. |
---|