Cargando…

BASE – The Baryon Antibaryon Symmetry Experiment

The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton...

Descripción completa

Detalles Bibliográficos
Autores principales: Smorra, C., Blaum, K., Bojtar, L., Borchert, M., Franke, K.A., Higuchi, T., Leefer, N., Nagahama, H., Matsuda, Y., Mooser, A., Niemann, M., Ospelkaus, C., Quint, W., Schneider, G., Sellner, S., Tanaka, T., Van Gorp, S., Walz, J., Yamazaki, Y., Ulmer, S.
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1140/epjst/e2015-02607-4
https://dx.doi.org/10.1140/epjst/e2015-02336-2
http://cds.cern.ch/record/2149810
Descripción
Sumario:The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton $g$-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle's motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of $\delta g/g$ 10$^{-9}$ can be achieved. The successful application of this method to the antiproton will represent a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.