Cargando…

Homotopy theory of higher categories: from Segal categories to n-categories and beyond

Develops a full set of homotopical algebra techniques dedicated to the study of higher categories.

Detalles Bibliográficos
Autor principal: Simpson, Carlos
Lenguaje:eng
Publicado: Cambridge University Press 2011
Materias:
Acceso en línea:http://cds.cern.ch/record/2150092
_version_ 1780950448107159552
author Simpson, Carlos
author_facet Simpson, Carlos
author_sort Simpson, Carlos
collection CERN
description Develops a full set of homotopical algebra techniques dedicated to the study of higher categories.
id cern-2150092
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2011
publisher Cambridge University Press
record_format invenio
spelling cern-21500922021-04-21T19:43:03Zhttp://cds.cern.ch/record/2150092engSimpson, CarlosHomotopy theory of higher categories: from Segal categories to n-categories and beyondMathematical Physics and MathematicsDevelops a full set of homotopical algebra techniques dedicated to the study of higher categories.Cambridge University Pressoai:cds.cern.ch:21500922011
spellingShingle Mathematical Physics and Mathematics
Simpson, Carlos
Homotopy theory of higher categories: from Segal categories to n-categories and beyond
title Homotopy theory of higher categories: from Segal categories to n-categories and beyond
title_full Homotopy theory of higher categories: from Segal categories to n-categories and beyond
title_fullStr Homotopy theory of higher categories: from Segal categories to n-categories and beyond
title_full_unstemmed Homotopy theory of higher categories: from Segal categories to n-categories and beyond
title_short Homotopy theory of higher categories: from Segal categories to n-categories and beyond
title_sort homotopy theory of higher categories: from segal categories to n-categories and beyond
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2150092
work_keys_str_mv AT simpsoncarlos homotopytheoryofhighercategoriesfromsegalcategoriestoncategoriesandbeyond