Cargando…
Performance of the ALICE secondary vertex b-tagging algorithm
The identification of jets originating from beauty quarks in heavy-ion collisions is important to study the properties of the hot and dense matter produced in such collisions. A variety of algorithms for b-jet tagging was elaborated at the LHC experiments. They rely on the properties of B hadrons, i...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201612605004 http://cds.cern.ch/record/2150394 |
Sumario: | The identification of jets originating from beauty quarks in heavy-ion collisions is important to study the properties of the hot and dense matter produced in such collisions. A variety of algorithms for b-jet tagging was elaborated at the LHC experiments. They rely on the properties of B hadrons, i.e. their long lifetime, large mass and large multiplicity of decay products. In this work, the b-tagging algorithm based on displaced secondary-vertex topologies is described. We present Monte Carlo based performance studies of the algorithm for charged jets reconstructed with the ALICE tracking system in p-Pb collisions at $\sqrt{s_\text{NN}}$ = 5.02 TeV. The tagging efficiency, rejection rate and the correction of the smearing effects of non-ideal detector response are presented. |
---|