Cargando…
Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope
We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for future high-{\eta} RPC triggers in the CMS. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick pheno...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/11/08/C08008 http://cds.cern.ch/record/2150402 |
_version_ | 1780950466930147328 |
---|---|
author | Lee, K.S. Cho, S.W. Choi, S.Y. Hong, B. Go, Y. Kang, M.H. Lim, J.H. Park, S.K. Cimmino, A. Crucy, S. Fagot, A. Gul, M. Rios, A.A.O. Tytgat, M. Zaganidis, N. Aly, S. Assran, Y. Radi, A. Sayed, A. Singh, G. Abbrescia, M. Iaselli, G. Maggi, M. Pugliese, G. Verwilligen, P. Doninck, W.van Colafranceschi, S. Sharma, A. Benussi, L. Bianco, S. Piccolo, D. Primavera, F. Bhatnagar, V. Kumarl, R. Metha, A. Singh, J. Ahmad, A. Ahmad, M. Ahmed, W. Asghar, M.I. Awan, I.M. Hassan, Q. Hoorani, H. Khan, W.A. Khurshid, T. Muhammad, S. Shah, M.A. Shahzad, H. Kim, M.S. Goutzvitz, M. Grenier, G. Lagarde, F. Laktineh, I.B. Carpinteyro Bernardino, S. Uribe Estrada, C. Pedraza, I. Severiano, C.B. Carrillo Moreno, S. Vazquez Valencia, F. Pant, L.M. Buontempo, S. Cavallo, N. Esposito, M. Fabozzi, F. Lanza, G. Lista, L. Meola, S. Merola, M. Orso, I. Paolucci, P. Thyssen, F. Braghieri, A. Magnani, A. Montagna, P. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Ban, Y. Qian, S.J. Choi, M. Choi, Y. Goh, J. Kim, D. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Lomidze, D. Avila, C. Cabrera, A. Sanabria, J.C. Crotty, I. Vaitkus, J. |
author_facet | Lee, K.S. Cho, S.W. Choi, S.Y. Hong, B. Go, Y. Kang, M.H. Lim, J.H. Park, S.K. Cimmino, A. Crucy, S. Fagot, A. Gul, M. Rios, A.A.O. Tytgat, M. Zaganidis, N. Aly, S. Assran, Y. Radi, A. Sayed, A. Singh, G. Abbrescia, M. Iaselli, G. Maggi, M. Pugliese, G. Verwilligen, P. Doninck, W.van Colafranceschi, S. Sharma, A. Benussi, L. Bianco, S. Piccolo, D. Primavera, F. Bhatnagar, V. Kumarl, R. Metha, A. Singh, J. Ahmad, A. Ahmad, M. Ahmed, W. Asghar, M.I. Awan, I.M. Hassan, Q. Hoorani, H. Khan, W.A. Khurshid, T. Muhammad, S. Shah, M.A. Shahzad, H. Kim, M.S. Goutzvitz, M. Grenier, G. Lagarde, F. Laktineh, I.B. Carpinteyro Bernardino, S. Uribe Estrada, C. Pedraza, I. Severiano, C.B. Carrillo Moreno, S. Vazquez Valencia, F. Pant, L.M. Buontempo, S. Cavallo, N. Esposito, M. Fabozzi, F. Lanza, G. Lista, L. Meola, S. Merola, M. Orso, I. Paolucci, P. Thyssen, F. Braghieri, A. Magnani, A. Montagna, P. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Ban, Y. Qian, S.J. Choi, M. Choi, Y. Goh, J. Kim, D. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Lomidze, D. Avila, C. Cabrera, A. Sanabria, J.C. Crotty, I. Vaitkus, J. |
author_sort | Lee, K.S. |
collection | CERN |
description | We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for future high-{\eta} RPC triggers in the CMS. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs for cosmic rays and 100 GeV muons provided by the SPS H4 beam line at CERN. We applied maximum gamma rates of 1.5 kHz cm-2 provided by 137Cs sources at Korea University and the GIF++ irradiation facility installed at the SPS H4 beam line to examine the rate capabilities of the prototype RPCs. In contrast to the case of the four-gap RPCs, we found the relatively high threshold was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-{\eta} endcap RPCs planned for future phase-II LHC runs. |
id | cern-2150402 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
record_format | invenio |
spelling | cern-21504022023-08-16T02:50:48Zdoi:10.1088/1748-0221/11/08/C08008http://cds.cern.ch/record/2150402engLee, K.S.Cho, S.W.Choi, S.Y.Hong, B.Go, Y.Kang, M.H.Lim, J.H.Park, S.K.Cimmino, A.Crucy, S.Fagot, A.Gul, M.Rios, A.A.O.Tytgat, M.Zaganidis, N.Aly, S.Assran, Y.Radi, A.Sayed, A.Singh, G.Abbrescia, M.Iaselli, G.Maggi, M.Pugliese, G.Verwilligen, P.Doninck, W.vanColafranceschi, S.Sharma, A.Benussi, L.Bianco, S.Piccolo, D.Primavera, F.Bhatnagar, V.Kumarl, R.Metha, A.Singh, J.Ahmad, A.Ahmad, M.Ahmed, W.Asghar, M.I.Awan, I.M.Hassan, Q.Hoorani, H.Khan, W.A.Khurshid, T.Muhammad, S.Shah, M.A.Shahzad, H.Kim, M.S.Goutzvitz, M.Grenier, G.Lagarde, F.Laktineh, I.B.Carpinteyro Bernardino, S.Uribe Estrada, C.Pedraza, I.Severiano, C.B.Carrillo Moreno, S.Vazquez Valencia, F.Pant, L.M.Buontempo, S.Cavallo, N.Esposito, M.Fabozzi, F.Lanza, G.Lista, L.Meola, S.Merola, M.Orso, I.Paolucci, P.Thyssen, F.Braghieri, A.Magnani, A.Montagna, P.Riccardi, C.Salvini, P.Vai, I.Vitulo, P.Ban, Y.Qian, S.J.Choi, M.Choi, Y.Goh, J.Kim, D.Aleksandrov, A.Hadjiiska, R.Iaydjiev, P.Rodozov, M.Stoykova, S.Sultanov, G.Vutova, M.Dimitrov, A.Litov, L.Pavlov, B.Petkov, P.Lomidze, D.Avila, C.Cabrera, A.Sanabria, J.C.Crotty, I.Vaitkus, J.Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC UpscopeDetectors and Experimental TechniquesWe report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for future high-{\eta} RPC triggers in the CMS. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs for cosmic rays and 100 GeV muons provided by the SPS H4 beam line at CERN. We applied maximum gamma rates of 1.5 kHz cm-2 provided by 137Cs sources at Korea University and the GIF++ irradiation facility installed at the SPS H4 beam line to examine the rate capabilities of the prototype RPCs. In contrast to the case of the four-gap RPCs, we found the relatively high threshold was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-{\eta} endcap RPCs planned for future phase-II LHC runs.We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for the Phase-2 upgrade of the CMS muon system at high η. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs with cosmic rays and with 100-GeV muons provided by the SPS H4 beam line at CERN. To examine the rate capability of the prototype RPCs both at Korea University and at the CERN GIF++ facility, the chambers were irradiated with (137)Cs sources providing maximum gamma rates of about 1.5 kHz cm(−)(2). For the 1.6-mm-thick double-gap RPCs, we found the relatively high threshold on the produced detector charge was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-η endcap RPCs planned for future phase-II runs of the Large Hadron Collider (LHC).We report on a systematic study of double-gap and four-gap phenolic resistive plate chambers (RPCs) for future high-{\eta} RPC triggers in the CMS. In the present study, we constructed real-sized double-gap and four-gap RPCs with gap thicknesses of 1.6 and 0.8 mm, respectively, with 2-mm-thick phenolic high-pressure-laminated (HPL) plates. We examined the prototype RPCs for cosmic rays and 100 GeV muons provided by the SPS H4 beam line at CERN. We applied maximum gamma rates of 1.5 kHz cm-2 provided by 137Cs sources at Korea University and the GIF++ irradiation facility installed at the SPS H4 beam line to examine the rate capabilities of the prototype RPCs. In contrast to the case of the four-gap RPCs, we found the relatively high threshold was conducive to effectively suppressing the rapid increase of strip cluster sizes of muon hits with high voltage, especially when measuring the narrow-pitch strips. The gamma-induced currents drawn in the four-gap RPC were about one-fourth of those drawn in the double-gap RPC. The rate capabilities of both RPC types, proven through the present testing using gamma-ray sources, far exceeded the maximum rate expected in the new high-{\eta} endcap RPCs planned for future phase-II LHC runs.arXiv:1605.00440oai:cds.cern.ch:21504022016-05-02 |
spellingShingle | Detectors and Experimental Techniques Lee, K.S. Cho, S.W. Choi, S.Y. Hong, B. Go, Y. Kang, M.H. Lim, J.H. Park, S.K. Cimmino, A. Crucy, S. Fagot, A. Gul, M. Rios, A.A.O. Tytgat, M. Zaganidis, N. Aly, S. Assran, Y. Radi, A. Sayed, A. Singh, G. Abbrescia, M. Iaselli, G. Maggi, M. Pugliese, G. Verwilligen, P. Doninck, W.van Colafranceschi, S. Sharma, A. Benussi, L. Bianco, S. Piccolo, D. Primavera, F. Bhatnagar, V. Kumarl, R. Metha, A. Singh, J. Ahmad, A. Ahmad, M. Ahmed, W. Asghar, M.I. Awan, I.M. Hassan, Q. Hoorani, H. Khan, W.A. Khurshid, T. Muhammad, S. Shah, M.A. Shahzad, H. Kim, M.S. Goutzvitz, M. Grenier, G. Lagarde, F. Laktineh, I.B. Carpinteyro Bernardino, S. Uribe Estrada, C. Pedraza, I. Severiano, C.B. Carrillo Moreno, S. Vazquez Valencia, F. Pant, L.M. Buontempo, S. Cavallo, N. Esposito, M. Fabozzi, F. Lanza, G. Lista, L. Meola, S. Merola, M. Orso, I. Paolucci, P. Thyssen, F. Braghieri, A. Magnani, A. Montagna, P. Riccardi, C. Salvini, P. Vai, I. Vitulo, P. Ban, Y. Qian, S.J. Choi, M. Choi, Y. Goh, J. Kim, D. Aleksandrov, A. Hadjiiska, R. Iaydjiev, P. Rodozov, M. Stoykova, S. Sultanov, G. Vutova, M. Dimitrov, A. Litov, L. Pavlov, B. Petkov, P. Lomidze, D. Avila, C. Cabrera, A. Sanabria, J.C. Crotty, I. Vaitkus, J. Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope |
title | Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope |
title_full | Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope |
title_fullStr | Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope |
title_full_unstemmed | Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope |
title_short | Radiation Tests of Real-Sized Prototype RPCs for the Future CMS RPC Upscope |
title_sort | radiation tests of real-sized prototype rpcs for the future cms rpc upscope |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1088/1748-0221/11/08/C08008 http://cds.cern.ch/record/2150402 |
work_keys_str_mv | AT leeks radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT chosw radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT choisy radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT hongb radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT goy radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT kangmh radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT limjh radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT parksk radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT cimminoa radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT crucys radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT fagota radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT gulm radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT riosaao radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT tytgatm radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT zaganidisn radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT alys radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT assrany radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT radia radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT sayeda radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT singhg radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT abbresciam radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT iasellig radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT maggim radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT puglieseg radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT verwilligenp radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT doninckwvan radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT colafranceschis radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT sharmaa radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT benussil radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT biancos radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT piccolod radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT primaveraf radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT bhatnagarv radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT kumarlr radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT methaa radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT singhj radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT ahmada radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT ahmadm radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT ahmedw radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT asgharmi radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT awanim radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT hassanq radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT hooranih radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT khanwa radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT khurshidt radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT muhammads radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT shahma radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT shahzadh radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT kimms radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT goutzvitzm radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT grenierg radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT lagardef radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT laktinehib radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT carpinteyrobernardinos radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT uribeestradac radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT pedrazai radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT severianocb radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT carrillomorenos radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT vazquezvalenciaf radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT pantlm radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT buontempos radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT cavallon radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT espositom radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT fabozzif radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT lanzag radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT listal radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT meolas radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT merolam radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT orsoi radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT paoluccip radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT thyssenf radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT braghieria radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT magnania radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT montagnap radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT riccardic radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT salvinip radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT vaii radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT vitulop radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT bany radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT qiansj radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT choim radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT choiy radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT gohj radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT kimd radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT aleksandrova radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT hadjiiskar radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT iaydjievp radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT rodozovm radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT stoykovas radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT sultanovg radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT vutovam radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT dimitrova radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT litovl radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT pavlovb radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT petkovp radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT lomidzed radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT avilac radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT cabreraa radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT sanabriajc radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT crottyi radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope AT vaitkusj radiationtestsofrealsizedprototyperpcsforthefuturecmsrpcupscope |