Cargando…

HTS Dipole Magnet for a Particle Accelerator using a Twisted Stacked Cable

We show by modelling that the quench propagation velocity is not constant in HTS coils but it changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the...

Descripción completa

Detalles Bibliográficos
Autores principales: Himbele, John J., Badel, Arnaud, Tixador, Pascal
Formato: info:eu-repo/semantics/article
Lenguaje:eng
Publicado: IEEE Trans. Appl. Supercond. 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TASC.2016.2542058
http://cds.cern.ch/record/2153836
Descripción
Sumario:We show by modelling that the quench propagation velocity is not constant in HTS coils but it changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation of these velocities. According to the results in our particular simulation case, the longitudinal normal zone propagation velocity is 30 % higher far away from the quench origin compared to its immediate vicinity when Top=4.2 K and Tcs=15 K.