Cargando…

Chips for discovering the Higgs boson and other particles at CERN: Present and future

Integrated circuits and devices revolutionized particle physics experiments, and have been essential in the recent discovery of the Higgs boson by the ATLAS and CMS experiments at the Large Hadron Collider at CERN [1,2]. Particles are accelerated and brought into collision at specific interaction po...

Descripción completa

Detalles Bibliográficos
Autor principal: Snoeys, W
Lenguaje:eng
Publicado: 2015
Materias:
XX
Acceso en línea:http://cds.cern.ch/record/2196065
Descripción
Sumario:Integrated circuits and devices revolutionized particle physics experiments, and have been essential in the recent discovery of the Higgs boson by the ATLAS and CMS experiments at the Large Hadron Collider at CERN [1,2]. Particles are accelerated and brought into collision at specific interaction points where detectors, giant cameras of about 40 m long by 20 m in diameter, take pictures of the collision products as they fly away from the collision point. These detectors contain millions of channels, often implemented as reverse biased silicon pin diode arrays covering areas of up to 200 m2 in the center of the experiment, generating a small (~1fC) electric charge upon particle traversals. Integrated circuits provide the readout, and accept collision rates of about 40 MHz with on-line selection of potentially interesting events before data storage. Important limitations are power consumption, radiation tolerance, data rates, and system issues like robustness, redundancy, channel-to-channel uniformity, timing distribution and safety. The already predominant role of silicon devices and integrated circuits in these detectors is only expected to increase in the future.