Cargando…
The parabolic Anderson model: random walk in random potential
This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-valu...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-33596-4 http://cds.cern.ch/record/2196697 |
_version_ | 1780951118115766272 |
---|---|
author | König, Wolfgang |
author_facet | König, Wolfgang |
author_sort | König, Wolfgang |
collection | CERN |
description | This is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension. |
id | cern-2196697 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
publisher | Springer |
record_format | invenio |
spelling | cern-21966972021-04-21T19:38:48Zdoi:10.1007/978-3-319-33596-4http://cds.cern.ch/record/2196697engKönig, WolfgangThe parabolic Anderson model: random walk in random potentialMathematical Physics and MathematicsThis is a comprehensive survey on the research on the parabolic Anderson model – the heat equation with random potential or the random walk in random potential – of the years 1990 – 2015. The investigation of this model requires a combination of tools from probability (large deviations, extreme-value theory, e.g.) and analysis (spectral theory for the Laplace operator with potential, variational analysis, e.g.). We explain the background, the applications, the questions and the connections with other models and formulate the most relevant results on the long-time behavior of the solution, like quenched and annealed asymptotics for the total mass, intermittency, confinement and concentration properties and mass flow. Furthermore, we explain the most successful proof methods and give a list of open research problems. Proofs are not detailed, but concisely outlined and commented; the formulations of some theorems are slightly simplified for better comprehension.Springeroai:cds.cern.ch:21966972016 |
spellingShingle | Mathematical Physics and Mathematics König, Wolfgang The parabolic Anderson model: random walk in random potential |
title | The parabolic Anderson model: random walk in random potential |
title_full | The parabolic Anderson model: random walk in random potential |
title_fullStr | The parabolic Anderson model: random walk in random potential |
title_full_unstemmed | The parabolic Anderson model: random walk in random potential |
title_short | The parabolic Anderson model: random walk in random potential |
title_sort | parabolic anderson model: random walk in random potential |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-33596-4 http://cds.cern.ch/record/2196697 |
work_keys_str_mv | AT konigwolfgang theparabolicandersonmodelrandomwalkinrandompotential AT konigwolfgang parabolicandersonmodelrandomwalkinrandompotential |