Cargando…

Ecole d'été de probabilités de Saint-Flour XLV

Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be v...

Descripción completa

Detalles Bibliográficos
Autor principal: van de Geer, Sara
Lenguaje:eng
Publicado: Springer 2016
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-319-32774-7
http://cds.cern.ch/record/2196736
_version_ 1780951126523248640
author van de Geer, Sara
author_facet van de Geer, Sara
author_sort van de Geer, Sara
collection CERN
description Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
id cern-2196736
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
publisher Springer
record_format invenio
spelling cern-21967362021-04-22T06:41:06Zdoi:10.1007/978-3-319-32774-7http://cds.cern.ch/record/2196736engvan de Geer, SaraEcole d'été de probabilités de Saint-Flour XLVMathematical Physics and MathematicsTaking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.Springeroai:cds.cern.ch:21967362016
spellingShingle Mathematical Physics and Mathematics
van de Geer, Sara
Ecole d'été de probabilités de Saint-Flour XLV
title Ecole d'été de probabilités de Saint-Flour XLV
title_full Ecole d'été de probabilités de Saint-Flour XLV
title_fullStr Ecole d'été de probabilités de Saint-Flour XLV
title_full_unstemmed Ecole d'été de probabilités de Saint-Flour XLV
title_short Ecole d'été de probabilités de Saint-Flour XLV
title_sort ecole d'été de probabilités de saint-flour xlv
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-319-32774-7
http://cds.cern.ch/record/2196736
work_keys_str_mv AT vandegeersara ecoledetedeprobabilitesdesaintflourxlv