Cargando…
Ecole d'été de probabilités de Saint-Flour XLV
Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be v...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-32774-7 http://cds.cern.ch/record/2196736 |
_version_ | 1780951126523248640 |
---|---|
author | van de Geer, Sara |
author_facet | van de Geer, Sara |
author_sort | van de Geer, Sara |
collection | CERN |
description | Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course. |
id | cern-2196736 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
publisher | Springer |
record_format | invenio |
spelling | cern-21967362021-04-22T06:41:06Zdoi:10.1007/978-3-319-32774-7http://cds.cern.ch/record/2196736engvan de Geer, SaraEcole d'été de probabilités de Saint-Flour XLVMathematical Physics and MathematicsTaking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.Springeroai:cds.cern.ch:21967362016 |
spellingShingle | Mathematical Physics and Mathematics van de Geer, Sara Ecole d'été de probabilités de Saint-Flour XLV |
title | Ecole d'été de probabilités de Saint-Flour XLV |
title_full | Ecole d'été de probabilités de Saint-Flour XLV |
title_fullStr | Ecole d'été de probabilités de Saint-Flour XLV |
title_full_unstemmed | Ecole d'été de probabilités de Saint-Flour XLV |
title_short | Ecole d'été de probabilités de Saint-Flour XLV |
title_sort | ecole d'été de probabilités de saint-flour xlv |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-32774-7 http://cds.cern.ch/record/2196736 |
work_keys_str_mv | AT vandegeersara ecoledetedeprobabilitesdesaintflourxlv |