Cargando…

Mesure de la section efficace de production de paires de photons isolés dans l'expérience ATLAS au LHC et étude des couplages à quatre photons

The LHC, which is the most powerful proton-proton collider in the world located at CERN (Switzerland), brings unprecedented opportunities to test our knowledge of the fundamental interactions at the TeV scale. In this work, two main projects have been achieved for this purpose. First, the production...

Descripción completa

Detalles Bibliográficos
Autor principal: Saimpert, Matthias
Lenguaje:fre
Publicado: 2016
Materias:
Acceso en línea:http://cds.cern.ch/record/2198280
Descripción
Sumario:The LHC, which is the most powerful proton-proton collider in the world located at CERN (Switzerland), brings unprecedented opportunities to test our knowledge of the fundamental interactions at the TeV scale. In this work, two main projects have been achieved for this purpose. First, the production cross section measurement of at least two photons in the final state ($pp\rightarrow\gamma\gamma+X$) is performed with data taken at a center-of-mass energy of 8 TeV by the ATLAS detector, which is one of the multipurpose detector installed around the LHC ring. Photons are interesting probes to test the theory of strong interactions (Quantum chromodynamics or QCD) since they couple significantly to quarks but do not hadronize and thus still allow to perform high resolution measurements. The measurement of their production rate at the LHC allows to test QCD in both the perturbative and the non-perturbative domain. It is also sensitive to the emission of soft particles in the initial-state, which is tricky to handle on the theory side due to the collinear and soft divergences arising in QCD. Experimental uncertainties have been reduced by a factor 2 or more with respect to the measurements performed previously at the LHC or at the Tevatron (Fermilab, USA) and the high statistics of the ATLAS data sample at 8 TeV allows to increase significantly both the reach and the resolution of the measurement. In general, a good agreement is observed with theoretical predictions. The second project achieved in this work is dedicated to the evaluation of the light-by-light scattering potential (LbyL, $\gamma\gamma\rightarrow\gamma\gamma$) for new physics searches. LbyL is an intriguing process arising from quantum fluctuations only that has never been observed directly. It involves four-photon couplings, which are shown to be highly sensitive to a broad range of new physics models at high energy such as the ones predicting the existence of extra spatial dimensions to solve the hierarchy problem currently affecting the standard model of particle physics. By taking benefit of the photon flux from the protons at the LHC, I show that one may discover anomalous four photon couplings with a sensitivity allowing to compete with several direct new physics searches. Finally, I had the opportunity to test the new SAMPIC chip which aims to perform time-of-flight measurements with a few picoseconds precision from fast samplings of detector signals. SAMPIC timing capabilities have been tested using Gaussian signals generated by a signal generator or by silicon detectors illuminated with an infrared laser. Under these ideal conditions, the SAMPIC chip has proven to be capable of timing resolutions down to 4 (40) ps with synthesized (silicon detector) signals.