Cargando…
Two-jet rate in $e^{+}e^{-}$ at next-to-next-to-leading-logarithmic order
We present the first next-to-next-to-leading logarithmic resummation for the two-jet rate in $e^+e^-$ annihilation in the Durham and Cambridge algorithms. The results are obtained by extending the ARES method to observables involving any global, recursively infrared and collinear safe jet algorithm...
Autores principales: | Banfi, Andrea, McAslan, Heather, Monni, Pier Francesco, Zanderighi, Giulia |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevLett.117.172001 http://cds.cern.ch/record/2198972 |
Ejemplares similares
-
A general method for the resummation of event-shape distributions in $e^{+} e^{-}$ annihilation
por: Banfi, Andrea, et al.
Publicado: (2014) -
Next-to-leading non-global logarithms in QCD
por: Banfi, Andrea, et al.
Publicado: (2021) -
Next-to-next-to-leading order event generation for top-quark pair production
por: Mazzitelli, Javier, et al.
Publicado: (2020) -
Higher-order non-global logarithms from jet calculus
por: Banfi, Andrea, et al.
Publicado: (2021) -
Next-to-leading order predictions for WW + 1 jet distributions at the LHC
por: Campbell, John M., et al.
Publicado: (2007)